
September, 
1990 

Volume 1, 
No.7 

The Journal of Apple II Programming 

The Kansas Report: 

$4.00 

Uncle DOS looks funny with wet hair 



New kit restores your Apple IIGs 

If you purchased an Apple IIGS computer before August 1989 (512K model), a 
Lithium battery was soldered onto the computer board at the factory and the internal 
clock started ticking. It is just a matter of time until the battery runs out of juice and 
your computer forgets what day it is and any special settings you have selected in 
the Control Panel. 

.. Fantastic Savings 
" Easy Installation 

If the software you are running uses the date and time to keep track of records 
you could be in for real trouble when the clock runs out. The IIGS is also known to 
lose disk drives along with numerous other side effects caused by a dead battery . 

" No Solder Required 
" Complete instructio11.s 
•10 Year Shelf Ute 

Before the introduction of Nite Owl's Slide-On battery, the normal method for 
replacing the IIGS battery was to pack your computer up and take it to your local 
Apple dealer. That was very inconvenient, time consuming, and expensive for the 
typical computer owner. 

" Top Quality lithium Slide-On battery replacement is not much more difficult than changing a light 
bulb. Using wire cutters, scissors, or nail clippers, the old battery is removed leaving 
the original wires still soldered to the mother board. The new Slide-On battery has 
special terminals which have been designed to fit onto the old battery wires. It 
usually takes only a couple of minutes. Complete, easy-to-follow instructions are 
included with every kit . 

Typically , our customers have reported that the original equipment batteries 
have an average life expectancy of 2 to 3 years. This is about half as long as they 
were supposed to last. Slide-On replacement kits include Heavy Duty batteries 
which should provide for a longer battery service life. 

We highly recommend that every IIGS owner keep a spare battery on hand, 
Slide-On kits are $14.95 ea. ready for when the inevitable battery failure occurs. These Lithium batteries have a 
$12 ea. in quantities of 10+. shelf life of over 10 years, and come with a full90 day satisfaction guarantee. 

WRAITH 
Adventure Game 

Special 
Introductory 
Price $9.95* 

~~~~~~~~ 

M .1p 
.\liHI(~f> 

CO(lyr~JI·• •C , 1 •r•J "''" Owi 

This graphic adventure game comes complete on a 
single 3.5 inch disk with on-screen instructions, a 
map, demo play option, and dungeons which 
were too vast and expansive to fit on 5.25" disks. 

The object is to search out and destroy the evil 
WRAITH to save the mythical island of Arathia. 
To succeed at this quest the adventurer must fend 
off many monsters, Jearn magic spells, and buy 
weapons and armor to defeat the evil WRAITH. 

Works on ANY Apple][ with a 3.5" drive. It 
will have a retail price of $14.95 . One of the best 
software values ever! *Offer expires 12/31/90 

Please give us a call today at: (913) 362-9898 
JPfuCJtiDl-CClJPlYOOlte FAX: (913) 362-5798 

r-----------------l 
I Nite Owl Productions I 
I 5734 Lamar Avenue A I 
I Mission, KS 66202 I 
I USA I L _________________ J 

(Cut & Pa,te Address Label) 

Font Collection -The A2-Central staff" has spent years 
searching out and compiling hundreds of !!GSfonts . These 
fonts are packed onto eight 3 5 inch disks. They work with 
IICS paint, draw, and word processing program<J.!ncludes a 
program to unpack them and an Appleworks data file. $39 

Telephone #: 

Quantity Description Price Amount 

Slide-On Battery Kits 

WRAITH Adventure 

Font Collection 

Signature for Credit Card Orders 

$ 14.95 

$ 9.95 

$39.00 
Kansas 

Sales Tax 
Shipping & 
llandling Please include $2 shipping and 

handling I $5 for overseas orders. 
Kansas residents add 6% sales tax . TOTAL 

Prices may Change without noti ce. 



Copyright (C) 1990, Ariel Publishing, Most Rights Reserved 

Publisher & Editor-in-Chief 
Apple llgs Editor 
Classic Apple Editor 
Contributing Editors 

Subscription Services 

Ross W. Lambert 
Eric Mueller 
Jerry Kindall 
Jay Jennings 
David Gauger 
Steve Stephenson 
Mike Westerfield 
Cecil Fretwell 
Tamara Lambert 
Karen Redfield 

Subscription prices in US dollars : 

• magazine 
• monthly disk 

1 year $32 
1 year $69.95 

2 years $60 
2 years $129 

Canada and Mexico add $5 per year per product ordered. 
Non-North American orders add $15 per year per product 
ordered. 

WARRANTY and LIMITATION of LIABILITY 

Ariel Publishing, Inc. warrants that the information in 8/16 is 
correct and useful to somebody somewhere. Any subscriber 
may ask for a full refund of their last subscription payment at 
any time. Ariel Publishing's LIABILITY FOR ERRORS AND 
OMISSIONS IS LIMITED TO THIS PUBLICATION'S 
PURCHASE PRICE. In no case shall Ariel Publishing, Inc. 
Ross W. Lambert, the editorial staff, or article authors be 
liable for any incidental or consequential damages, nor for 
ANY damages in excess of the fees paid by a subscriber. 

Subscribers are free to use program source code printed 
herein in their own compiled, stand-alone applications with 
no licensing application or fees required. Ariel Publishing 
prohibits the distribution of source code printed in our pages 
without our prior permission. 

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box 
398, Pateros, WA 98846 (509) 923-2249 (voice) or (509) 
689-3136 (fax). 

Apple, Apple II, llgs, lie, lie+, lie, AppleTalk, and Macintosh 
are all registered trademarks of Apple Computers, Inc. 

We here at Ariel Publishing freely admit our shortcomings, 
but nevertheless strive to bring glory to the Lord Jesus 
Christ. 

The 
Publisher's 
Pen 
by Ross W. Lambert 

I am writing this column the day after my 
retum from KansasFest (and immediately 
following the first full night's sleep I've had in 
four days) . Egads. What a conference it was. 

Meeting so many people was a total gas. but 
it also really impressed upon me the weight of 
responsibility the house of Ariel carries as 
joumalists. 

That's not to say that I'm going soft on you. 
On the contrary; my English and joumalism 
background almost makes it impossible for 
me to deny the "Fourth Estate's" 
responsibility to ferret out the truth in 
matters great and small. But with that 
constitutional right comes a great burden -
the burden of proof and factuality. 

The event that precipitated all of this will 
seem a trifle to most of you; an error in 
Murphy Sewall's VaporWare column of July. 
He reported that all of the Mac programmers 
at Beagle Bros, Inc. had departed from their 
employ. 

A knowledgeable source informed me that 
this was patently untrue. Now don't get me 
wrong; Murphy is most definitely entitled to 
his opinion, as are we all. But we did not in­
clude any header or disclaimer to Murph's 
column to indicate that it was substantially 
speculation based on rumors. 

For that. I'd like to apologize to Mark 
Simonsen and the folks at Beagle. 

I want 8 I 16 to be a trustworthy source of 
information. Part of the charm of a column 
like Murph's is the sometimes outrageous 
expression of opinion. This is okay, but it 
should be obvious as such. I'll make sure it is 



from now on. I plan to put a bold disclaimer at 
the top identifying that 'VaporWare" is what it 
is. Murphy is a perceptive observer of the 
industry. but his observations in the column are 
based on rumors or reports of rumors. Just 
because PC World prints something doesn't 
mean it is true. So take VaporWare for what it is 
- an entertaining, somewhat askance view of the 
industry not to be taken too seriously. 

Furthermore, and perhaps most importantly, 
you all are free to express your opinion's in 
letters to the editor, too. 

Hello? Is anybody home? 

Which leads me to a second point. Letters. We 
want 'em. We'll even handle your technical 
questions - that's why I arranged for Cecil 
Fretwell to take Mike Rochip's place as our 
resident guru. And we want you to express 
yourselves, too. For example. if you disagree 
with our opinions then do so - in print. We'll give 
you the space. That is important to the health 
of any community and helps check the spread of 
misinformation. 

Now back to the conference ... Keep in mind as 
you read this that I can only reliably report on 
the sessions I attended. I wish I could've gone 
through 'em all. Furthermore. keep in mind that 
the absolutely positively best part of the entire 
conference for me was to meet and mingle with 
my heroes. I got to play Roger Wagner's guitar 
and listen to a 1 :00 AM HyperStudio demo 
(Roger, you amaze me). I got to go see 
Arachnaphobia and sit two chairs away from 
Randy Brandt (who wanted to come back with a 
plastic spider on a string). And I got to listen to 
Eric Soldan play some Bach on a slightly out of 
tune piano. In spite of the piano. it was totally 
astounding. Eric is multitalented to-da-max. 

I attended the IIgs College on Thursday. It was 
very good, although if they ever have another 
organized the same way, l'd want to suggest the 
following two things to y'all: If you are a rank 
beginner at IIgs and/ or desktop programming, 
then spend a little time boning up ahead of time. 
For the true neophyte. the beginner's track was 
a little too fast paced. For anyone with almost 
any desktop programming experience, however, 
you ought to take the advanced track. For this 
open-ended and less structured set of sessions, 
it is important to bring a boat load of questions. 
It's a chance to let someone else save you time 
by helping you with your sticky problems. 

The Apple DTS crew did a great job (C.K. Haun 
gets my vote as best overall presenter). and they 
even gave us free goodies: a "Moofl" mousepad 
with a dogcow on it, a complete set of Apple II 
Tech Notes, and a KCFest disk with a zillion 
tools on it including GS Bug. These were worth 
the price of admission. lemme tell ya. 

One dynamite new product demo'd at the 
College and elsewhere was Dave Lyons Nifty List 
version 3.0. Dave works for DTS and just 
couldn't help using the software (along with 
everyone else - he didn't have to try to sell it, it 
sold itself). It is immensely useful and is one of 
the few items I'd mark as indispensable for the 
IIgs programmer. 

I was impressed enough to include it in the first 
edition of our ToolSmith column. Look for it 
elsewhere this issue. 

The general sessions began on Friday, and 
included several by Apple that I cannot talk 
about at all: we had to sign non-disclosure 
agreements. They were exciting, and I will say 
this much: IIgs sales are going to pick up a lot. If 
Apple's marketing department does even half as 
well at pushing the new goodies as I want them 
to. there will most definitely be a resurgence of 
interest in the II line. 

And the rumor mill is actively grinding out more 
juicy tidbits every day. I'll leave those to Murph, 
however. 

My first session was entitled "Apple IIgs System 
Software Update". This appears to be a regular 
item on the agenda at each conference. I think it 
is a little misnamed: there was no updating 
done, really. The Apple folks merely overviewed 
the components of the latest official release. 
There is nothing wrong with this, but a few 
attendees went in expecting to hear about 
unreleased or future versions of system 
software. Although Microsoft seems to prosper 
by semi-officially leaking information, I guess 
we'd all better get used to the fact Apple just 
does not do that. I for one have given up trying 
to play the "tell me a secret" game. 

This little hacker went to market ... 

The next session I went to was my own: 
Marketing for Small Developers. I'd like to 
publicly blast Tom Weishaar for not giving me 
two hours Oust kidding, Tom, though I wish you 
had). I really only covered the basics and ran 
out of time to get into the more treacherous 



waters. There appears to be sufficient interest 
in the subject that I have decided to convert my 
seminar to article form and serialize it within 
this column. I'll try to keep it all as practical 
and useful as possible. 

At 11:00 AM I stumbled into Jim Mensch's 
animation tools session. This man is a wizard, 
even if he is a "scum sucking elitist pig" by his 
own admission. If you want to know the truth, I 
was more excited about his new toolkit than 
anything else at the whole conference. Jim's 
"AnimateGS" is going to be a simple mechanism 
whereby we can do high quality animation with 
minimal programming overhead. It is a really 
hip idea, I think, because it will allow generalists 
like me to add credible animation to their 'wares 
without having to spend six months learning the 

placed and reliable source in the industry who 
told me that their evangelist is still counseling 
educational software firms to go to the Mac. 
One big-time educational software firm has 
dropped all further Apple II development 
because of it. 

The company involved must really have some 
warped perceptions of schools. I can see why 
Apple would want to encourage Mac educational 
software development, but they must be very 
careful to encourage parallel development. If a 
company is producing Mac educational software, 
it is almost ludicrous not to do an Apple IIgs 
version at the same time. It opens up a broader 
market with little, if any, extra development 
time. 

tricks of the masters. We'll have to wait a while It is entirely possible (maybe even probable) that 
(it is not even to the alpha stage yet), but even the company involved has misapplied the evan­
the demo was really ...------------ --------- gelist's advice. But 
exciting. the point remains that 

With the exception of 
the lunchtime speech 
by Jane Lee, the entire 
rest of the day (as far 
as you are concerned) 
was signed away into 
non -disclosured 
oblivion. C'est le vie. 

Jane Lee, however, 
was charming and 
encouraging. She is 
the official Apple II Marketing Geek. (I've said 
that of myself, Tom Weishaar, Rajiv Mehta, and 
now Jane all with tongue in cheek. It's not an 
insult, though it may be getting old. Time to 
move on to another colorful description.) Jane 
reported on her progress towards moving the 
Apple II forward in the corporate consciousness. 
It is happening, though I visualize the process to 
be somewhat like turning over an elephant. 
Jane has a rope around the neck pulling with all 
her might along with the help of Ralph Russo, 
the new Apple II Overseer and Grand Poobah . 
John Sculley is on the back side pushing with a 
couple of fingers. Many parts of the elephant 
are moving, many parts are not. This is to be 
expected. 

A well placed kick ... 

After talking with several developers, it is clear 
that one part of the corporate elephant that is 
not yet moving in the right direction is 
Evangelism. I have an anonymous but highly 

the Apple employee in 
question left himself 
open to that kind of 
terribly erroneous mis­
interpretation. The 
time has come for 
evangelism to evange­
lize software firms to 
produce GS software. 
The situation right 
now is quite similar to 
the Mac's circa 1986. 
We've got a great ma­

chine with some really great features, but the 
developers need some encouragement. I think 
Apple needs a Ilgs evangelist (or two) . 

I have never hidden the fact that I hack the Mac 
and Ariel Publishing, Inc. even has a Macintosh 
publication. Those facts alone, I think, should 
lend some credence to what I am saying. I am 
not a wild-eyed radical wishing for a return to 
1982. I am a businessman and an opportunist. 
There are powerful, logical, bottom-line oriented 
arguments for developing Apple IIgs software 
right now. Evangelism is not fulfilling their 
mission if they are not in tune with that. 

Keep pulling, Jane. 

There were several good seminars on Friday 
night, including Vidar Jorgensen's "Extending 
the Life of the Apple II". an AppleTalk session 
with Brian Fitzgerald, and a sound and 
animation Q & A session with Chris McKinsey, 
Lane Roath, and Bill Heineman which then 
tun1ed into A2-Centralite Jay Jenning's long 



anticipated "All Night HackFest". Fortunately for 
all concerned, the doors had to be locked some 
time around 2:00 AM. Most folks were 
exhausted beyond all belief, anyway, and I didn't 
last anywhere near that long. If you must know 
the truth, I couldn't attend any of these as I was 
"unavoidably indisposed". 

Saturday 

I felt better on Saturday. though, and made it to 
the SynthLab session, Llew Roberts' CD-ROM 
session, and the Apple Ilgs media integration 
session. 

SynthLab is beyond description. It is a MIDI se­
quencer, a 16 channel mixer, a synthesizer con­
troller, and mucho more. I'm sure I don't even 
understand the half of what it does. Apple 
music guru Mark Cecys has done a wonderful 
job putting together a package that will put the 
Ilgs on the map in the music world. Although 
the product is not shipping yet, it was mucho 
impressivo nonetheless. 

The media integration and CD-ROM sessions 
were not technically enlightening, but were 
really motivational. I've always loved multi­
media projects since I first put one together in 
graduate school. These sessions reminded me of 
their absolutely captivating power. We got to 
preview a Houghton-Mifflin project that is truly 
astounding. 

The only thing that worries me is that "media 
integration" (the newest buzzword) appears to be 
falling into the domain of the mega-houses (i.e. 
those that can afford to hire a camera team and 
buy expensive hardware like laser disk players, 
etc.). There are relatively inexpensive 
alternatives (licensable video and sound libraries 
and VCR controllers, for example), and I think if 
Apple really wants media integration to 
proliferate, they might want to consider putting 

such libraries together so that we small to medi­
um sized developers can get access to them 
without losing our shirts. It would be pricey for 
Apple, but they'd get a good portion of the cost 
back in license fees. It's a good deal for us be­
cause a license doesn't cost nearly as much as a 
full scale video production team. 

As you might expect, there was "much, much 
more". I'm sure I forgot something important 
and significant, too. But I'll be sure and relate 
them to you as I remember them (and after I get 
just a little more sleep). 

==Ross== 

P.S. Okay. I've had a little more sleep now. I for­
got to mention that there was a horrendous rain 
storm before the Royals game. Didn't matter 
much to me because Bo Jackson was hurt, any­
way. Guess he did it one too many times or 
something. We therefore crawled into buses and 
cars and boogied off to the movies. That's where 
we saw Arachnaphobia. If you have the slightest 
fear of spiders, don't go see this flick. Otherwise 
it is a hoot. 

Rewarding the Faithful 

By the way, please allow me a moment to give a 
blatant plug for a faithful and consistent adver­
tiser, i.e. Night Owl Production's Bob Shofstall. 
He has put together two disks that my brother­
in-law has fallen in love with- Wraith, an adven­
ture game that costs like $9.95 or some ungodly 
low amount, and his latest release, The Nite Owl 
Journal. This latter disk is an eclectic 680K of 
goodies ranging from another adventure game to 
Applesoft programming utilities to a mailing 
label program. It is a lot of material for the low, 
low price of $9.95. Call Bob and say the follow­
ing words slowly: "Long live 8/16 and their ad­
vertisers. Send me the Night Owl Journal." 

Bob also has replacement batteries for your GS 
(I've got mine, you got yours?) and several other 
goodies. 

By the way, my bro-in-law is an adventure game 
addict and is one of the better players I've ever 
seen. He has over 25 hours into Wraith and calls 
it "top of the line". 

Bob's ad is on the inside front cover if you need 
more details. Here's the most important detail of 
all . though: 

Nlte Owl Productions (913) 362-9898 



Mega Power for Mini Bucks 
by Ross W. Lambert 

Due to popular demand, we are inaugurating 
this semi-regular column, henceforth dubbed 
The ToolSmith. The purpose here is to sutvey the 
software development landscape and not only re­
view the environments and utilities available, 
but also dig into some of their more esoteric and 
powerful features. I hope to con (er- make that 
"convince") some of the developers of these pack­
ages to reveal their innermost secrets. Though 
we'll certainly be doing outright reviews from 
time to time, we'll also strive to make this a "how 
to" kind of series. 

In a nutshell then, our goals here are to help 
you ferret out what you really do need to buy 
and then to help you get the most of it when you 
do. 

So let's dig right in. 

More than a trip to the movies ... 

One of the best side benefits of the A2-Central 
developers conference was being able to see pro­
fessional programmers using and demonstrating 
their favorite tools. This was more helpful than 
you might imagine. I was skeptical and down­
right fearful of several of the hot new products 
until I saw them up close. 

And lest you fear that I'm going to recommend 
you mortgage your house to get them all, let me 
point out ahead of time that two of my favorites 
are inexpensive shareware offerings (Nifty List 
and Low Level Resource Editor) . The third is a 
$30 APDA product (GSBug). We'll look at the 
shareware this month and GSBug next month. If 
you bought the whole ball of wax it would still be 
a paltry $70. The time you save will be more 
than worth it. 

Nifty List Niftier 

Most GS programmers have at least heard of 
Nifty List by Apple, Inc.'s David Lyons. I used to 
think of it as simply a "glorified monitor" for the 
Ilgs. Boy, was I an ignorant slimeball. 

Allow me to digress a moment and encourage 8 
bit programmers to continue reading - Nifty List 
is dem useful for 8 bit folks using the GS as 
their development platform. 

Getting Resourceful 

As soon as I started working with resources on 
the Ilgs I soon realized how important Nifty List 
can be. But I'm getting ahead of myself. 

Nifty List has the reputation of being hard to 
learn because it is so powerful. If that is what is 
holding you back, you're missing out on a lot of 
programming help due to groundless fears. 

You can make Nifty List as easy or as hard as 
you want it to be (and that's the way the best 
programs should be, really). The fun thing for 
me is that it became invaluable just moments 
after I put it on my hard drive. I did not then 
nor do I now know the deep dark secrets sur­
rounding its more mystical uses. I may never ­
but I'm still putting it to good use in the mean 
time. 

Installation 

Nifty List is a CDA that you just tuck into your 
/System/Desk.Accs folder. Installation is there­
fore a piece of cake. Version 3 .0 comes with two 
optional "module" files (I'll explain what those 
are in a little while) that need only be tucked 
into the same folder. 



Use and Abuse 

Once Nifty List is installed and ready (did you re­
boot? Or do you have InitRunner?) now all you 
do is just code as normal - until such time as 
you want to test your program/DA/init/ whatev­
er. Once you launch it, you can do the three fin­
gered salute (OPEN-APPLE/ CONIROL /ESC) 
and jump to the CDA menu. Select Nifty List, 
and you'll see the NL> prompt along with author 
Dave Lyons' title screen. 

Getting Down and Dirty 

Rather than tell you all about the plethora of 
commands that are available to you at this 
point, let's look at how Nifty List has already 
helped me. 

It may seem a silly bug (is there such a thing as 
an intelligent bug?). but I was having trouble 
finding a cursor resource attached to my latest 
work-in-progress. 

_LoadResource was 
retuming an error 
every cotton-pick­
ing time. 

Enter Nifty List. 

As soon as I 
launched the app, I 
went into Nifty List 
and typed "Oi'' 
(that's a zero and a 
lower case i). This 
command retums 
information about 
every handle allo­
cated in memory. I 
figured that this 
would at least reas­
sure me that my 
resource was in­
deed there. (A pro­
gramming digression here: the resource didn't 
necessarily have to be there. Depending on the 
state of memory, the resource's flags, etc., the 
Resource Manager might not actually load the 
thing until the very moment you do a 
_LoadResource. In this respect the Resource 
Manager provides a limited form of virtual mem­
ory.) 

As Nifty List dutifully pointed out, my resource 
was sitting contently in memory minding its own 
business. Figure 1 is a screen dump of what 

Nifty List revealed. The Oi command (hence­
forth dubbed the "oink" command) lists all of the 
handles in memory, their address, their size. 
flags, their owner's ID, and the owner's path. 
The "i" part of the command stands for informa­
tion. "Oi'' says to Nifty List. "Give me info on ev­
erybody". 5000i would be saying, "Give me info 
on desk accessories only, please". You don't 
need to memmize that because David spelled it 
all out in his nice documentation file. 

Best of all for those of us munging around with 
resources, Nifty List tells you the resource type 
by number and name as well as the ID assigned 
to that particular resource. 

Perhaps I'm just a paranoid programmer, but 
this alone was worth the price of admission. 

Another nicety is the ability to auto-dereference 
a handle . Take my cursor demo, for example 
(please!). If I actually wanted to find my cursor 
data in memory, all I have to type is the cursor's 
handle followed by a caret("). a colon, and an h . 

Likethis: E069C4";h 

The caret asks 
Nifty List to deref 
the handle that 
precedes it. The 
colon and the "h" 
ask Nifty List for 
a hex dump on 
the range of 
memory that the 
pointer pointed 
to by the handle 
points to. 

Hehehe. I love a 
good indirection 
early in the 
moming. 

See how easy this 
is? I can make 
excellent use of 

Nifty List with just these two commands, "oink" 
and "caret". There are lots, lots more. of course. 

You can get disassemblies of a range of memory 
just like (actually, better than) the monitor. You 
can get descriptions of commands with the 
equals sign (=i, for example, would provide a de­
scription of the info command we looked at earli­
er.) And you can extend Nifty List with com­
mand modules. 



~I IUS 

Taking Command 

Oh yes, the command modules... David Lyons 
has created a very programmer-extensible envi­
ronment. By writing an NDA-like set of routines, 
you, too, can design your own Nifty List com­
mands. Pop 'em in the same folder Nifty List 
lives in and presto chango - instant added com­
mands. This looks to be a promising avenue for 
a future 8/16 article - I hereby declare it to be 
on our wish list. 

The two command modules included with the 
shareware package are BB (Big Brother), and 
Goodies. You can get a list of all the commands 
in all of the command modules available by typ­
ing"=\" or"?\". 

The Best is Last 

Nifty List is not only easy to use, it is easy to 
buy. It is a $15 shareware product available 
from: 

DAL Systems 
P.O. Box 875 
Cupertino, CA 95015 

I have only scratched the very surface of Nifty 
List's nifty feature list. To better help you decide 
if it has features and/ or abilities you need, 
Figure 2 contains a list of my favorite commands 
and their descriptions. 

Nifty List is kinda like turning on a flashlight in 
a dark room. You can't see everything all at 
once, but it beats the heck out of banging 
around in the dark. 

~ 
~ 

The Resource Dilemma 

Resources are both a terrific opportunity and a 
dismal dilemma for GS programmers. No matter 
where you turn, somebody wants you to shell 
out $100+ for the "perfect" package for working 
with these beasties. A Merlin owner without the 
APW /Orca shell is looking at spending over 
$150 in order to use Rez, Apple's resource com­
piler (because you gotta have the shell to use it) . 

Don't get me wrong, I've fallen in love with both 
Orca and Rez. But the good ol' capitalist society 
in which we live is spawning more than one way 
to skin the resource cat. 

Up until recently, Rez was the only mechanism 
around for cutting, copying, and/or pasting re­
source between resource files. Even Genesys 
and DesignMaster cannot do that yet. Thanks to 
shareware author Jason Coleman, that is no 
longer so. 



Figure 1: LLRE's main window and File menu 

Cop~ 

Hew Resource F i I e... 6H 1-:-::-:-:-::--:------~ 
Hew Resource Fork ... 

r---------1 $8004 rControl Temp 1 ate 
C I ear Data Fork ... 
Clear Resource Fork ... 

$8006 rPString 
$8008 rMenuBar 
$8009 rMenu 

---------1$800A rMenultem 
6Q $8000 rTextBox2 

$800E rWindParaml 

(Inverse Edit)~ ~OC Edit Resource] 

Jason's LLRE (Low Level Resource Editor) is 
probably your quickest and cheapest path to re­
source creation. There's no syntax to learn. no 
big check to write, and no wait. It's here. It's 
now. It's happening. 

It's no John Kennedy 

I know a lot of folks are going to argue vocifer­
ously that LLRE doesn't even come close to the 
power and flexibility of Design Master. Genesys. 
or Rez. They are absolutely right. But I believe 
that most of you are a little leery of resources to 
begin with. and even more so when somebody 
wants you to shell out $150 for the privilege of 
using them. 

LLRE is a great introductory path. And even 
though I use both Rez and Genesys regularly, 
LLRE still gets called into action on virtually 
every job I do. The reason is that it copies re­
sources from file to file in a faster and simpler 
fashion than Rez. and Genesys can't do that 
task at all. 

Please note that Genesys (and probably Design 
Master) will undoubtedly acquire those capabili­
ties in time. But LLRE gives it to you now and 
for very little expense ($25 shareware). 

Figure 1 shows LLRE's main window along with 
the Files menu. As you can see. you can create 

a new resource file. put a resource fork on a file 
without one. and clear out either the resource 
or data forks of any file. 

These are neat features , but beware: you can 
really mess things over in a hurry. If you ditch 
the data fork of an S16 application, for example. 
you've ditched the program code itself. I can 
hardly wait for Mac programmers to start de­
stroying GS applications. 1 

You'll also notice the main window; Jason has a 
very nice scrolling display of the resources in 
the current resource fork. In this case you're 
looking at the resource fork of our very own DLT 
(the S16 version). If you select a resource type 
(the left list), you'll be shown all the ID's of the 
all the individual resources of that type (the 
right list) . 

Figure 2 reveals LLRE's ability to copy entire re­
source forks or shuflle single resources. This is 
a very slick feature and is the primary reason 
that LLRE is useful here and now. 

The reason why LLRE is not as robust as it's 
commercial counterparts is readily apparent 
when you proceed to actually create a resource 
from scratch (e.g. an icon or menu bar). 

1. Macintosh programs live in CODE resources. The 
data fork of a Mac application rarely contains any actu­
al program code. 



On the plus side, you can import the actual 
data from another resource with the push of a 
button. On the minus side, if you're creating 
actual data, you've got to enter it in hex or ascii. 
This means that LLRE is pretty much okee 
dokee for text string type data (Pascal strings 
and string lists) and custom data types (those 
you define), but it is pretty miserable entering 
the data for a cursor or icon in hex. 

This is where Genesys and Design Master abso­
lutely shine since they come with full blown edi­
tors for those kinds of items. 

Still, LLRE is a powerful tool for your arsenal. 
From a marketing point of view, author Jason 
Coleman has taken a brilliant approach, having 
seen and filled a void quickly and efficiently. 
Let me repeat that, unless you have Rez, there 
is no other method for copying, cutting, and 
pasting resources between files or programs. 
And even if you do have Rez, LLRE may prove to 
be quicker and more intuitive for such tasks. As 
a $25 shareware offering, it is well worth the 
price if you are heavy into the "resource-thing" 
on the IIgs. 

Figure 2: LLRE's Copy menu 

Ml.croDot just$ 29.95 
plus $2.50 S&ll 

Just 2.5K in size, but more powerful than BASIC.SYSTEM. 
Imagine doing BASIC overlays simply by specifying the file 
name and the line number where you want to overlay. How 
about loading an array of directory names at machine lan­
guage speed. You get this and total control over ProDOS 
that is impossible with BASIC.SYSTEM. Works with Pro­
gram Writer ($42.45. Bothfor$59.95+S&H). Loveitorget 
your money back! Inexpensive publishers' licenses. 

- Dealerlnqu~r~es lnv1ted 

Kitchen Sink Software, Inc 
903 Knebworth Ct. Dept. 8 
Westerville, OH 43081 
(614) 891-2111 

$800~ rContro 1 Temp ate 
$8006 rPString 
$8008 rMenuBar 
$8oog rMenu 
$800A rMenu Item 
$8008 rTextBox2 
$800E rWindParaml 

(Inverse Edit)~~ 



8/Jl(S) 

Miscellanea Month II 
by Ross W. Lambert 

My latest ventures into ZBasic's memory usage 
have proved enlightening, but I'm afraid I've not 
yet stumbled upon the variable space "pointer" 
that would permit us to store variables in the 
graphics pages directly. I've had a lot of letters 
wondering why I've gone to such lengths to 
shuffie data here and about when a simple 
POKE or two would probably reset things such 
that the space could be used automatically. 

Well, folks, it might be possible . I don't know, 
and I've not had time to fully disassemble the 
demed thing yet. My hunch is that the 8K in 
graphics-land of main memory could be got, but 
aux mem is probably out of bounds (at least not 
without rewriting ZBasic's variable storage and 
lookup routines). 

I'll keep poking 

take care of them better. It is one thing to dis­
continue a product; it is another to tell your 
customers to take a hike. 

ProTools II? 

Second, what is the status of ProTools II? Again, 
the answer is simple: it ain't gonna happen. 
We're not working on it anymore. Instead, I plan 
to share the routines and functions we did de­
velop within our pages. In short, we're giving it 
away (to 8/16 subscribers, anyway.) 

We plan to support ZBasic in 8/16 as long as a 
sizable number of you are using it. My guess is 

that we'll continue this 
column as a monthly 
for at least another 

around. 

ZStatus Report 

'7t is one thing to discontinue 
a product; it is another to tell 
your customers to take a 
hike." 

year, and then semi­
regularly thereafter. 
ZBasic is still, in my 
humble opinion, the 
premier 8 bit Apple II 

In the mean time, I'd 
like to deal with a 
couple of other common questions. First, what 
is the status of the Apple II ZBasic as far as 
Zedcor is concemed? The answer is simple: it is 
dead. They've not had an Apple II person in 
their employ since Greg Branche went to work 
for Apple, Inc. (nearly three years ago!). I think 
they could find somebody who'd take care of 
their users and pay them a royalty for the lan­
guage sales (thereby taking on all their head­
aches and paying them for the privilege) . But to 
my knowledge they've tumed down every offer 
anyone has made (including ours). I don't think 
letters are of any consequence in Tucson, but 
you might give it a try if you want to continue 
using the language. I think they owe it to the 
current owners to try and find someone who'll 

BASIC compiler (thank 
you , Greg Branche) . 

The distressing thing to me is that those of you 
leaving Z-Land are not dropping it in favor of 
another language, you're dropping the II, and 
not for the Macintosh. 

Apple's got good things in the queue for the II 
(I've seen 'em with my own eyes). Let's hope it 
is not too little too late. 

The ProTools II Folder 

As I indicated, we're going to be dishing out 
ProTools II piecemeal herein. So let's start dish­
ing it up. 



Want some pi? 

The first tidbits are two con-
venience functions, FN 
Angle2Radians and FN 
Radians2Angle. 

QUICK NOW: How many radi­
ans in a circle? No fair look­
ing it up in a book, either. 

With these two functions you 
can program and think in 
"normal" angles and still use 
functions and routines that 
require radians. 

Oh, by the way, there's 2 pi 
radians in a circle (i.e. 360 
degrees). 

The function does the conver­
sions by using proportions, 
that is it finds how much of the circle you're 
talking about and takes that proportion of radi­
ans (or degrees if you're reversing the process). 

The chart in Figure 1 shows how radians and 
degrees relate to each other around a circle. 

Listing 1: FN Angle2Radians and FN 
Radians2Angle 

REM --------------------------------------
REM FN Angle2Radians 
REM FN Radians2Angle 
REM These are public domain 
REM --------------------------------------
REM 
REM DESCRIPTION: The Angle2Radians fn 
REM will convert an angle (the unit of 
REM measure most of us carbon types 
REM understand) into radians (the 
REM unit of measure used by most scientific 
REM fns, etc.) Radians2Angle reverses the 
REM procedure . 
REM 
REM VARIABlES: Angle - in degrees 
REM Radians - the result 
REM 
REM ---------------------------------------
REM ======================================= 
REM 

LONG FN Angle2Radians! (Angle!) 
Radians! = (2 * 3.14159 * Angle!)\360 

END FN =Radians! 

LONG FN Radians2Angle! (Radians!) 
Angle! = (Radians! * 360) \ (2 * 3.14159) 

END FN =Angle! 

REM ======================================= 

PRINT "Enter an angle: ";:INPUT Angle! 
Radians! = FN Angle2Radians! (Angle!) 
PRINT "That equals "Radians!" radians." 
Angle! = FN Radians2Angle! (Radians!) 
PRINT "Converted back, that is an angle of 

";Angle!;" degrees." 
PRINT 
PRINT "Press a key to stop ... " 
DO 

K$ = INKEY$ 
UNTIL LEN (K$) 
END 

'There's lies, damn lies, and 
statistics." - Mark Twain 

Twain's dictum notwithstanding, one of our 
most requested functions has been FN Stats. 
Perhaps it is because a disproportionate num­
ber of educators are using ZBasic (perhaps due 
to its exceptionally high degree of numerical ac­
curacy?). At any rate, the folks doing all this 
asking have written gradebook programs, psy­
chology stats packages, etc., and have gotten 
good mileage out of this beastie already. Caveat 
emptor here: check my formulas! 



8/1l8 

FN Stats will examine a range of data in an 
array and return a wide array of statistical in­
formation to you, including the sum of all the 
items, the sum of the item's squares (useful for 
determining the variance and standard devia­
tion), the mean (the arithmetic average). the me­
dian (the middle score). the mode (the score that 
occurred the most often), the highest and lowest 
scores, and the standard deviation (essentially 
the average difference between scores). 

One slightly disconcerting thing: the function 
will report the lowest score as the mode if all the 
scores have occurred the same number of 
times. If it is important to have a valid mode, 
you need to scan the E (x) array to make cer­
tain that at least one score has occurred a dif­
ferent number of times than your modal score. 

FN Stats assumes an unsorted data array, and 
therefore performs a QuickSort on it. This 
takes the bulk of the time and it is best if elimi­
nated (if possible). Even with miscellaneous 
random data, the function is speedy enough for 
classroom sized chunks of data (about 6 sec­
onds on my GS). 

I don't feel too bad about the speed since my 
statistics prof had to tie up her micro for days 
when performing these same procedures on 
large samples. It is somewhat the nature of the 
beast, although I'd welcome any improvements 
y'all might want to send my way. 

Listing 2: FN Stats 

REM ----------------------------------------
REM FN Stats 
REM This is public domain 
REM 
REM DESCRIPTION: This function will scan 
REM any arbitrary range of data within an 
REM array and return the mean, median, 
REM computed mode, standard deviation 
REM range, summation, and sum of squares. 
REM It requires that you pass the starting 
REM element number and total number of 
REM elements to include. 
REM 
REM VARIABLES: 
REM ARRAYSTART - the 1st element to use 
REM TOTAL ITEMS - the total number of 

elements to use 
REM Mediant - the middle score 
REM Meant - arithmetic average 
REM SumOfSquarest - just what it says (used 

internally) 
REM Hight - the big score 

REM Lowt - the lowest score 
REM Mode - datum which occurred the most 
REM ST(X) -used in QuickSort routine 
REM 
REM -----------------------------------------

DIM Dataitemt(999): REM up to 1000 data items 
for this example 

DIM E(999) : REM ... for working out mode 
DIM ST(30,1) REM ... for Quick Sort routine 
REM 
REM ========================================= 
REM The function ... note that data must be 

"pre-deposited" in Dataitemt(X) 
REM 

LONG FN STATS (ARRAYSTART,TOTAL_ITEMS) 
SUMt=O:REM init in case called more than 

once 
Lowt = Dataitemt(ARRAYSTART) 
Hight= Dataitem#(ARRAYSTART) 
SumOfSquares# = 0 

REM scan data 

FOR X = ARRAYSTART TO 
ARRAYSTART+TOTAL ITEMS-1 

SUMt =SUM#+ Dataitem#(X) 
SumOfSquares# = SumOfSquares# + 

Dataitemt (X) "2 
IF Dataitem#(X) <Low# THEN Low# 

Dataitem#(X) :REM calculate range 
IF Dataitem#(X) >High# THEN High# 

Dataitem# (X) 
NEXT 

StDev# = SQR((SumOfSquares#­
((SUM#"2)\TOTAL_ITEMS))\(TOTAL_ITEMS-1)) 

"QUICK SORT" 
SP=O: ST(O,O)=O:ST(0,1)=0 
ST(0,1)= TOTAL_ITEMS-1 
DO 

L=ST(SP,O) : R=ST(SP,1) :SP=SP-1 
DO 

LI=L:RI=R:Dataitemt = Dataitemi((L+R)/2) 
DO 

WHILE Dataitem#(LI )<Dataitem# 
LI=LI+1 

WEND 
WHILE Dataitemi(RI)> Dataitem# 

RI=RI-1 
WEND 
LONG IF LI<=RI 

SWAP Dataitem#(LI), Dataitem# (RI) 
LI=LI+1:RI=RI-1 

END IF 
UNTIL LI>RI 
LONG IF (R-LI)> (RI-L) 



LONG IF L<RI 
SP=SP+1 : ST(SP,O)=L: ST(SP,1)=RI 

END IF 
L=LI 

XELSE 
LONG IF LI<R 

SP=SP+1: ST(SP,O)=LI:ST(SP,1)=R 
END IF 
R=RI 

END IF 
UNTIL R<=L 

UNTIL SP=-1 

Meant = SUMt\TOTAL_ITEMS 

REM figure median 

Midpoint = TOTAL_ITEMS/2.0 
LONG IF Midpoint = INT (Midpoint) 

we have even t of items? 
REM do 

Mediant = (Dataitemt(Midpoint) + 
Dataitemt(Midpoint+1))/2.0 :REM yes, so avg 
middle 2 items 

XELSE : REM no 
Mediant = Dataitemt(Midpoint) :REM it's 

odd, so take middle item 
END IF 

FOR I = 0 TO TOTAL ITEMS-2 
FOR J = I + 1 TO TOTAL ITEMS-1 

IF Dataitemt(I) = Dataitemt(J) THEN E(I) 
E(I) + 1 

NEXT 
NEXT 

FOR I = 0 TO TOTAL ITEMS-1 
IF E(I) > NumTimes THEN NumTimes 

E(I) :ActualMode = I 
NEXT 

END FN 

REM ======================================== 

REM ------------
REM Demo 
REM ------------

MODE 2 

"Start" 
TOTAL ITEMS = 30 :REM classroom sized group 
PRINT "Creating random numbers ... " 
RANDOM 12345 :REM initialize random t seed 
FOR X = 0 TO TOTAL ITEMS-1 

Dataitemt(X) = RND (1000) :REM generate 
random ts 1 to 999 

NEXT 

PRINT "Calculating statistics ... " 

FN STATS ( 0, TOTAL_ ITEMS) :REM start 
with Oth element and include all 

PRINT:PRINT 
PRINT "The sum of all the data: ";SUMt 
PRINT " The sum of the squares: 

";SumOfSquarest 
PRINT " 
PRINT " 
PRINT " 

The mean: 
The median: 

The mode: 
";Dataitemt(ActualMode) 

";Meant 
";Mediant 

PRINT " The standard deviation: ";StDevt 
PRINT " The highest value: ";Hight 
PRINT " The lowest value: ";Lowt 
PRINT 
INPUT "Press RETURN ... " ;R$ 



I1JJ?.© ©®rllil])ffi~@U' ~fllil@~ 
665 West Jackson Street, Woodstock, IL 60098 

Mon-Frl, 9-6 CST (800) 869-9152 (815) 338-8685 Sat 12-5 CST 

Memory 
GS-4 Memory Board 
Ok $49 1 Meg 
2 Meg $166 4 Meg 

Chinook RAM 4000 
Ok $75 1 Meg 
2 Meg $199 4 Meg 

GS-Sauce SIMM Board 

$99 
$289 

$139 
$319 

Ok $89 1 Meg $161 
2 Meg $230 4 Meg $369 

GS Ram+ 
1 Meg $212 
3 Meg $344 
5 Meg $475 

2 Meg 
4 Meg 
6 Meg 

$279 
$411 
$535 

Checkmate MemorySaver $119 

A 11 memory is new and has a 
5 year warranty. 

Apple 1 Meg 80ns exp. set $67 
SIMM expansion set $69 
Apple 256k 120ns exp. set $18 
Apple 256k X 4 exp. set $19 

Accesories for GS 
Transwarp GS 7 Mhz $279 
Sonic Blaster $96 
VisionaryGS Digitizer $279 
RamFast 256k DMA SCSI $197 
Sound System II speakers $99 
System Saver GS $69 
Conserver GS $89 
A+ Optical Mouse ADB $87 
Cordless Mouse ADB $109 

GS Hardware 
,. Apple IIGS ROM 01 CPU $649 
Apple IIGS 1 Meg CPU, 
keyboard and mouse $819 
Apple Color RGB Monitor $447 
Apple IW II w l32k buffer $449 
Magnavox RGB Monitor $319 
Fortris ImageWriter 
compatible printer $229 
HP DeskJet+ 300 DPI! $599 
lE 3.5" Drive upgradable 
from 800k to1.44Meg $219 
AMR 3.5" Drive $183 
AMR 5.25" Drive $149 

Software 
Utilities 

Copy II Plus v. 9.0 $25 
Print Shop GS $27 
ProSel 8116 $66 
Programmers's Online 
Companion $37.50 

Vitesse Salvation Series: 
Guardian- HD Backup $29 
Renaissance- Optimizer $29 
Exorciser- Virus Detector $26 

Graphic Disk Labeler v.2.0 
Print Color Disk Labels on 

IW II in 320 and 640 modes! 
$24.50 

Business 
AppleWorks GS $212 
Manzanita Businessworks $294 

Education 
Designasaurus GS $33 
Geometry GS $56 
Talking Once Upon a Time $34 
StudyMate- Grade Booster $33 

GS Numerics 
A complete math program for 
high school, college students 

and professionals 
$104 

(Zip GS 8 Mhz $269) 

Entertainment 
FutureShock v.2.0 $54 
Heatwave Offshore Racing$37 
Test Drive II: The Duel $34 
Grand Prix Circuit $36 
Blue Angels Flight Sim. $37 
Third Courier $37 
Jam Session $32.25 
Task Force $29 
California Games $14.50 
Qix $25 
Rastan $25 
Arkanoid I or II $25 
Chessmaster 2100 $37 
Tunnels of Armageddon $32 

GS Starter System 
• Apple IIGS 1 Meg CPU, 

keyboard and mouse 
• Magnavox RGB Monitor 
• Fortris ImageWriter 

compatible printer 
• AMR 3.5" Drive 
• Mouse pad 
• Box of 10 Maxell 3.5" Disks 

$1599 

GS Power System 
• Apple Ilgs 1 Meg CPU, 

keyboard and mouse 
• Apple Color RGB Monitor 
• Apple ImageWriter II with 

32k buffer 
• Apple High Speed DMA SCSI 
• AMR 40 Meg GS Partener HD 
• Chinook RAM 4000 w I 2 Meg 
• AMR 3.5" Drive 
• Mouse pad 
• Box of 10 Maxell 3.5" Disks 

$2959 

Modems 
USR 14.4 kbs Courier 
Cardinal 2400 baud 
Supra 2400 baud 
Prometheus Promodem 
internal 2400G 

HST$589 
$109 
$109 

$144 

Hard Drives 
Chinook CTlOO 16k cache $780 
UniStore 80 Meg HS HD $529 
UniStore 60 Meg HS HD $474 
AMR GS Partner (0 Footprint) 
40 Meg $420 60 Meg $640 
80 Meg $700 100 Meg $876 
AMR 45 Removable HD $769 
CMS 60 Mt:g HD $539 
Apple DMA SCSI w I purchase 
of HD: $96 Without: $101 
All HDs come formatted w I GSOS or 
Mac system software, and 5-10 megs of 
PD, Share/Freeware,NDAs, CDAs, and 
!NITs . 

( InnerExpress $85 ) 

Prices subject to change without notice. Returns 
within 15 days with no restocking fee. IL residents 
add 6.5%. FAX orders and receive 2nd day air 
upgRd~ (815) 338-8597 



To Shell With It ' • 
by Morgan Davis 

Okay, let's all set our phasors to "stun" and 
point them in the general direction of the APW 
C standard library file. 

Sadly, APW C programs requiring command line 
arguments cannot be used from any shell other 
than ORCA/M (aka APW) . The myriad of 
programs written in APW C are reserved for 
those who purchased Apple's APW or The Byte 
Works' ORCA/ M shell. Users ofProSel-16, ECP-
16, or other third party environments are left 
out of this shell game because of one silly 
misfeature of the APW C standard library. And 
it doesn't look like Apple is about to upgrade the 
compiler any time soon to provide this courtesy. 
let alone fix more serious bugs. 

So, how do we write APW C programs that run 
under different environments? The answer: 
scrap the STARf.ROOT object file that is linked 
into all APW C programs and use our own 
version. Not only is this simple to do, but it also 
shrinks the size of your C programs down 
significantly. In 

identification string at the beginning of any 
command line passed to a shell (EXE) program. 
The ORCA/ M shell uses the string, BYTEWRKS, 
not surprisingly. 

Programs written in APW C that use command 
line arguments actually compare the shell's 
eight-byte identifier to BYI'EWRKS, and if it 
isn't there, the C program concludes. "Well, it 
ain't ORCA/M. so I'll just assume there are no 
arguments." We all know what happens when 
you assume. 

ANew Start 

Figure 1 shows an ORCA/ M assembly listing of 
our new STARf.ROOT. Briefly. it performs the 
following functions: 

• Sets up _ownerid 
• Sets the IIGS's data bank register to access 

our globals 
• Creates a pointer to 
a command line addition, applications 

(S16 files) can be 
created with APW C that 
will prompt the user for 
a command line so that 
C applications requiring 
command line 
arguments can even be 
run from the Finder. 

'~W C programs requiring 
command line arguments 
cannot be used from any 
shell other than ORCA/M 
(aka APW}." 

• If a command line is 
not present, the text 
devices are initialized 
• Performs a long 
jump to the main() C 
function 
• When main() 
returns. decides to quit 
via an RfL or GS/OS 

The trick is to create a 
new STARf.ROOT. Now, before you drag your 
old STARf.ROOT into the trash can, sending it 
into oblivion, just rename it. You may need it 
later. I've renamed mine to SHELL.ROOT. You'll 
find STARf.ROOT in prefix 2/, the LIBRARIES 
directory. 

By the way. whenever you see ORCA/M shell 
used here, it includes the APW shell as well. 

The Problem 

It is an understood policy that all programming 
shells for the Apple IIGS put an eight-byte 

QUIT 

There's quite a bit of magic here. But before we 
get into it, it is important to understand how 
shell (EXE type) files are launched. 

When control is passed to our STARf.ROOT 
code at the beginning of a C program, the 
accumulator holds the program's ID assigned to 
it by the launching application or operating 
system. The X and Y registers. if both are not 
zero. point to a special text buffer that holds the 
command line arguments. As mentioned, the 
command line text buffer begins with an eight­
byte shell identification string. Our 
STARf.ROOT saves the command line pointer 



in _cmdLine. 

If the C program's file type is Sl6, it is launched 
as a regular application, and no command line 
is provided, so X and Y are both zero. If the type 
is EXE, a command line is always provided, 
even if no arguments are given by the user. 

STARf.ROOT automatically configures itself for 
quitting depending on the presence of a 
command line. If no command line is available 
(meaning the program has an S 16 type assigned 
to it), the application quits via a GS/OS Class 0 
QUIT call. If the program is a standard EXE 
type, launched from a shell, it will quit by 
executing an RIL instruction. This is where all 
the fiddling with the _xQuit variable comes into 
play. Upon returning from main(), _xQuit is 
either zero or $0029. 

The text screen and keyboard are initialized 
only when the program is launched from a non­
shell launcher, like the Finder. When used 
under a shell, the text I/0 devices should not 
be altered. 

The mechanics used here are hardly high tech. 
The procedure is simple, as is this whole fiasco. 
But, now the fun begins: building the new 
STARf.ROOT. 

It is best to create an ORCA/M shell script as 
shown in Figure 2 to generate STARf.ROOT. 
Execute the script that contains these 
instructions, and a new STARf.ROOT is 
deposited into prefix 2/ (the LIBRARIES 
directory). 

Just Say No To Shell Commands 

A few rules must be followed in order to make 
use of the new STARf.ROOT. First of all, the C 
program cannot call any shell-dependent 
functions. After all, the object of this is to create 
C programs that are shell-independent. This 
means you can't call INIT_WILDCARD(), 
NEXT_WILDCARD(), STOP(), and other shell­
specific functions. If you need these, you can 
write equivalent functions on your own. 

Second, our STARf.ROOT does not start up the 
SANE toolset. In fact, it doesn't start any 
toolsets. If your C program uses floating point 
numbers, it is your responsibility to get SANE, 
and any other toolsets your program requires, 
started up at the beginning of your program. 
This can be done from within main(). 

Finally, don't use the exit() function. You can 

simulate it, however, by setting xStatus, one of 
STARf.ROOT's variables. Do this just before 
main() returns. Yes, this means that your 
programs must gracefully return from main(), as 
all well-behaved programs should. If a program 
must terminate from outside of main(), creative 
use of setjmp() can be applied. 

ARGS.C: A Sample 

Our new STARf.ROOT provides the foundation 
for new shell-independent C programs. On the 
C side of things, only a few supporting functions 
are needed to get command line arguments into 
our programs. The example listing in Figure 3 
shows a complete C program, called ARGS.C. 
This example is an excellent template to follow 
when creating your own shell-independent C 
programs. 

ARGS.C begins by defining these constants: 

0 PROGRAM: Title as shown in the "usage" part 
of your program 

0 COPYRIGHT: Your copyright notice 

0 PROGNAME: The intended file name of your 
program 

0 ARGUMENTS: Synopsis of the arguments 
your program requires 

0 ARGV _MAX: Maximum number of arguments 
your program might use 

Following these definitions comes the inclusion 
of header files that ARGS.C requires. 

Next, the program declares external references 
to some of STARf.ROOT's variables: 

_cmdLine 

_xStatus 

Pointer to the shell's command 
line (or NULL) 

Exit status variable (default 
value is zero) 

Now, the next three functions make up the guts 
ofARGS: 

ShowUsage Displays program title and usage 
information 

Getlnput A routine to get a line of input 
from the user 



ccommand Parses the command line, 
retuming the argument count 

Args (start.root demo) 1.0 30-Jun-90 
Copyright (C) 1990 Morgan Davis Group 

Clearly, ccommand() is the heart of the Usage: args [ arguments ... l 
argument processing system. By making a call 
to ccommand(), a C program can gather all the Now type: 
necessary information needed to set up the argc 
and argv[) variables that C programs use. args testing one two three 

How ccommand() Works 

Notice how ccommand() is called from within 
main(). Inside main(), the argc and argv[) 
variables are declared as local variables, not 
formal parameters to main(). Argv[) is an array 
of character pointers and will hold pointers into 
the command line where each argument begins. 
Argc will hold the count of the number of 
arguments on the command line, including the 
name of the C program itself. When ccommand() 
is called, the address of the argv[) array is 
passed. 

First. ccommand() determines if a command line 
is provided by the shell. If no command line is 
present, ccommand() calls ShowUsage() to 
display the program's title and usage 
information. It then prepares to make the 
Getlnput() call in order to obtain a line of input 
from the user. This occurs if ARGS has an 816 
file type and is launched as an application. 

Finally, ccommand() chews on the command 
line, setting up the argv[) array of pointers. and 
retuming the argument count. The parsing 
simply involves locating the beginning of each 
argument by skipping any leading or trailing 
space characters. No provision is made for 
parsing quoted strings (with or without embed­
ded spaces). handling character escapes, nor 
detecting I/0 redirection requests when the 
program is launched as an application. These 
features are left for you to add later, should you 
need them. 

Compiling and Running ARGS 

To compile and link ARGS.C, just type: 

cmpl args.c keep=args 

... just as you would with any ordinary APW C 
program. 

After it has been successfully compiled, type 
"args" alone at your shell prompt. If the 
program is working correctly, it displays: 

And, the following is displayed: 

args testing one two three 

It works! Try it again adding extra spaces 
between arguments to see the results. If you 
haven't guessed, ARGS displays the command 
line arguments from argv(O] to argv[argc-1]. 

Application Test 

Now, here's the big test. Change ARGS's file 
type from EXE to S 16 using the FILE'IYPE 
command: 

filetype args Sl6 

... and launch it by typing in ARGS. (You could 
enter some arguments, but because ARGS is no 
longer a shell program, the arguments are just 
ignored). The screen clears, the program's title 
and usage information is shown, and you're 
prompted to enter a command line. Here is 
where the Getlnput() function comes into play. 

After entering some arguments and pressing 
RETURN, the argument list is displayed just as 
it was when ran from a shell. Plus, the program 
is courteous enough to ask you to press a key 
before it erases the screen and quits to GS/OS. 

Neat. Now you can write C programs that use 
command line arguments from shells other than 
ORCA/M. and even from non-shell program 
launchers like the Finder! 

Enhancements 

Fortunately, STARr.ROOT and the 
accompanying C functions offer a lot of 
flexibility. For example, rather than obtaining a 
line of input from the text mode, the C program 
might want to bring up a nice dialog box in the 
super hires mode. Additionally, here are some 
other "tweaks" you may want to try: 

_xQuit. When the program is run as an 816 



8/Jl8 

application, change the value of this integer to 
$2029 to use a Class 1 GS/OS Quit call instead 
of a Class 0 QUIT. 

_xQPrompt. Normally, this Boolean variable is 
set to 1, which causes the C program to ask 
(Any Key] before quitting when run in 
application mode. Setting this to zero will 
bypass the prompting. 

qPath. This points to a file name to launch 
when main() quits. Normally, this doesn't point 
to any file name, so a standard Quit takes 
place, returning you to the launching program. 
Set this to point to any S16, EXE, or SYS file 
name to quit to a different application. 

qFlag. This integer holds the flags for use with 
the GS/OS QUIT function. Diddle the bits in 
this variable to alter the way your program 
quits. 

The new STARI'.ROOT gives you just enough to 
get most any C program off the ground, yet 
saves a lot of disk space and memory by not 
assuming that a C program requires stuff that it 
may never use. 

About the author: 

Morgan Davis is founder of the Morgan Davis Group, 
not affiliated with the Morgan Davis Band of Canada. 
However, Morgan would proudly wear a Morgan 
Davis Band T-shirt if given one. He hopes to make 
regular contributions to 8/16. 

Listing 1: START.ASM Source 

********************************************* 

plb 
plb 
pla 
sta 
sty 
stx 
txa 
ldx 
ora 
bne 

jsr 
ldx 

doMain stx 
jsl 
lda 
bne 

lda 
rtl 

__pquitx sta 
lda 
beq 

pea 
pea 
ldx 

; retrieve ownerid 
I ownerid ; store copy _ownerid 
l_crndLine ;save cmd line ptr 
l_crndLine+2 

; prep for NULL comparison 
#0 X = 0 (quit flag) 
l_crndLine 
I doMain 

; a command line? 
; yes! Don't init 
;text screen 

txtinit 
#$0029 

;init text I/0 devices 
; set class 0 quit 

l_xQuit 
main 
l_xQuit 
l_pquitx 

I xStatus 

; call number 
; set up xQuit code 

call the program 
exit type? 
go ProDOS 

return via RTL 

l_osqnum ;Save quit code num 
l_xQPrompt;prompt before quit? 
l_osquit ; no 

_xAnyKeyl-16 ; "Any Key" prorrpt 
_xAnyKey 
#$200C ; WriteCString 

jsl $E10000 

pha 
pea 
ldx 
jsl 

pla 
pea 
pea 
ldx 
jsl 

jsr 

;now get a keypress 
0 

#$220C ;ReadChar 
$E10000 

_xAKNulll-16 
xAKNull 

#$1AOC 
$E10000 

;write a newline 

WriteLine 

txtinit ; init text I/0 
*** ;devices (clear scrn) 
*** start.asm Source for a better START.ROOT 
*** for use with APW C programs 
*** 
*** 
*** 

Copyright (C) 1990 Morgan Davis Group 
Most Rights Reserved 

case on ; case sensitive for C 
objcase on 

start start 
using 
ph a 
lda 

segment ... 
xba 
ph a 

main ;start in "main" load seg 
-globals 

; save ownerid for now 
#_toolErrl-16; make -globals 

; . .. where the DBR references 

_osquit lda 

jsl 
_osqnum de 

de 

txtinit pea 
pea 
pea 
ldx 
jsl 

pea 
ldx 
jsl 

xStatus ;just in case it 
;might be used 

$e100a8 ;call operating system 
i2 '$0029' ; QUIT 
i4 'qPath' 

1 
0 
3 
#$0FOC ;SetinputDevice (1, 3L) 
$E10000 

0 
#$150C 
$E10000 

InitTextDev (0) 



pea $007f 
pea 
ldx 

jsl 

pea 
pea 
pea 
ldx 
jsl 

pea 
ldx 
j sl 

pea 
pea 
ldx 

$0000 
#$090C 

$El0000 

1 
0 

3 

SetlnGlobals 
(Ox007f, OxOOOO) 

#$100C;Set0utputDevice (1, 3L) 
$El0000 

1 
#$150C 
$El0000 

$00FF 
$0080 
#$0AOC 

; InitTextDev (1) 

; SetOutGlobals 
; (OxOOFF, Ox0080) 

jsl $El0000 

unset echo 

Listing 3: ARGS.C 

/******************************************** 
*** 
*** args.c A program to demonstrate 
*** shell-independent APW C programs 
*** 
*** Copyright(C) 1989-1990 Morgan Davis Group 
*** 
***/ 

#define PROGRAM "\pArgs (start. root demo) 1. 0 
30- Jun- 90" 
#define COPYRIGHT 
Morgan Davis Group" 
#define PROGNAME 
#define ARGUMENTS 
#define ARGV MAX 

"\pCopyright (C) 1990 

"args" 
"\p [arguments ... ]" 
50 

rts #include <types.h> 
end #include <ctype.h> 

#include <string.h> 
-globals data -globals ; -globals segment 
_toolErr entry 

ds 2 tool/disk error results 
_ownerid entry 

ds 2 ID of program 
_ cmdLine entry 

qPath 

qFlag 

_xQuit 

ds 4 command l i ne pointer 
entry 
ds 
entry 
de 
entry 
de 

4 path pointer to next app 

h'OOOO' ; quit flags 

h'0029' ; quit command number 
; ($0000, $0029, or $2029) 

_xStatus entry 
ds 2 ; return status for shell 

_xQPrompt entry 
de 

_xAnyKey de 
xAKNull de 

end 

Listing 2: 

h'0001 ' ; Boolean : prompt on 
;app exit 

c"[Any Key]" ; exit prompt str 
h'OOOO'; end of prompt string 

;/newline text 

START.ROOT Creation Script 

set echo 1 
assemble start.asm keep=start 
crunchiigs start 
delete start.a start.root 
move - c start.obj 2/start . root 

#include <texttool.h> 

extern ptr cmdLine; 
extern int xStatus; 

void 
ShowUsage(name) 

char *name; 

word 

ErrWriteLine(PROGRAM); 
ErrWriteLine(COPYRIGHT); 
ErrWriteLine(""); 
ErrWriteCString("Usage: "); 
ErrWriteCString(name); 
ErrWriteLine(ARGUMENTS); 

Getlnput(prompt, stuffer, buf, size) 
char *prompt, *stuffer, *buf; 
word size; 

char *p = buf; 
word n = 0; 
int c; 

if (prompt) 
ErrWriteCString(prompt); 

if (stuffer) ( 
strncpy(buf, stuffer, size); 
p += (n = strlen(buf)); 
ErrWriteCString(buf); 



8/JLS 

do 

ErrWriteChar(S); I* Cursor on *I 
c = (ReadChar(noEcho) & Ox007f); 
ErrWriteChar(6); I* Cursor off *I 

switch(c) 
case 8: 
case 127: 

if (n) 
--p; 
--n; 
ErrWri teSt ring (" \p \b \b") ; 

break; 
case 27: 

p = buf; 
n = 0; 

case 13: 
case 10: 

*p = 0; 
c = -1; 

break; 
default: 

if (isprint(c) && (n < size)) 
ErrWriteChar(*p++ =c); 
++n; 

while (c != -1); 
ErrWriteLine(""); 
return (n); 

word 
ccommand (argv) 

char **argv; 

static char clbuf[255]; 
word n = 0; 
char *cp cmdLine + 8; 

over shell's ID *I 
I* skip 

if ( !_cmdLine) 
ShowUsage(PROGNAME); 
strcpy(clbuf, PROGNAME); 
strcat(clbuf, " "); 
Getinput("\nt ", clbuf, clbuf, 

sizeof(clbuf)); 
cp = clbuf; 

while (*cp && (n < ARGV_MAX)) 
while (isspace(*cp)) 

cp++; 
if (*cp) { 

argv[n] = cp; 
while (! (is space (*cp)) && *cp) 

cp++; 

*cp++ 0; 
n++; 

return (n); 

void 
main() 
{ 

char *argv[ARGV_MAX]; 
word argc; 
word i; 

argc = ccommand(argv); 
arguments *I 

if (argc = 1) { 
none, show usage *I 

ShowUsage(argv[O]); 
xStatus = -1; 

else { 
for (i = 0; i < argc; i++) 

show arguments *I 
WriteCString(argv[i]); 
WriteChar (' '); 

WriteLine (""); 
xStatus = 0; 

Program 
the IIGS! 

I* get 

I* if 

I* else 

Programming the Apple JIGS in Assembly 
Language by Ron Lichty and David Eyes. The easiest­
to-follow step-by-step guide to creating full-fledged Apple 
IIGS applications. Develop Hello, World from an 8-line 
program that prints on the text screen to a full-blown desktop 
program with menu bar, dialogs , icons, and multiple, 
sizeable , scrollable windows! Thorough reference section. 
550 pages. "Addictive ... the more I read, the more fascinated 
I became ... In my opinion, this book will fill a big gap in the 
world of the Apple IIGS." (Call-APPLE technical editor Cecil 
Fretwell) "A must for would-be Apple IIGS programmers ... a 
jump start for beginners and experienced programmers alike." 
(Nihh/e editor David Krathwohl) "This book belongs in 
every Apple IIGS programmer's library." (Diversi-software 
author/publisher Bill Basham) $32 postpaid 

Hello, World disks (code from the book, on disk): 
APW/ORCAM $20; Merlin $10; C (APW/ORCA) $20 

ORCA/M Assembler (Byte Works) $46 postpaid 
ORCA C Compiler (Byte Works) $84 postpaid 

Calif: add 7% tax. No VISA/MG. Send SASE for details. 
Foreign, add: Canada $2; Europe $14 (air); Asia $20 (air) 

Ron Lichty (8), POB 27262, San Francisco, CA 94127 



t:EKES'YS' 
Now available and shipping! 

Genesys™ ... the premier resource creation, editing, and source code 

generation tool for the Apple II GS. 

Genesys is the first Apple IIGS CASE tool of its kind with an open­

ended architecture, allowing for support of new resource types as Apple 

Computer releases them by simply copying additional Genesys Editors 

to a folder. Experienced progranuners will appreciate the ability to 

create their own style of Genesys Editors, useful for private resource 

creation and maintenance. And Genesys generates fully commented 

source code for ANY language supporting System 5.0. Using the 

Genesys Source Code Generation Langugage (SCGL), the Genesys 

user can tailor the source code generated to their individual tastes, and 

also have the ability to generate source code for new languages, existing 

or not. 

Genesys allows creation and editing of resources using a WYSIWYG 

environment. Easily create and edit windows, dialogs, menu bars, 

menus menu items, strings of all types, all the new system 5.0 controls, 

icons, cursors, alerts, and much more without typing, compiling, or 

linking one single line of code. 

The items created with Genesys can be saved as a resource fork or turned 

into source code for just about any language. Genesys even allows you 

to edit an existing program that makes use of resources. 

Genesys is guaranteed to cut weeks, even months, off program develop­

ment and maintenance. Since the interface is attached to the program, 

additions and modifications take an instant effect. 

Budding programmers will appreciate the ability to generate source 

code in a variety of different languages, gaining an insight into 

resources and programming in general. Non-progranuners can use 

Genesys to tailor programs that make use of resources. Renaming 

menus and menu items, adding keyboard equivalents to menus and 

controls, changing the shape and color of windows and controls, and 

more. The possibilities are almost limitless! 

Genesys is an indispensable tool for the progranuner and non­
programmer alike! 

Retail Price: $150.00 

Order by phone or by mail. Check, money order, MasterCard, Visa and 
American Express accepted. Please add $5.00 for S!H 
Simple Software Systems International, Inc. 

4612North Landing Dr. ( 4Q4) 928_4388 
Marietta, GA 30066 

SSSi is pleased to announce that we will be carrying the GS Sauce memory card by 
Harris Laboratories. This card offers several unique features to Apple //gs owners: 

Made in USA 
Limited Lifetime Warranty 
100% DMA compatable 
100% GS/OS 5.0 and ProDOS 8 & 16 compatable 
Installs in less than 15 seconds! 
Low-power CMOS chips 
Uses "snap-in" SIMMs modules- the same ones used on the Macintosh 
Recycle your Macintosh SIMMs modules with GS Sauce. 
Expandable from 256K to 4 Meg of extra DRAM 

This card is 100% compatable with all GS software and GS operating systems. It 
is 100% tested before shipping and has a lifetime warranty. The CMOS technol­
ogy means that it consumes less power and produces less heat thus making it easier 
on your //gs power supply. There are no jumpers, just simple to use switches to set 
the memory configuration. One step installation takes less than 15 seconds. 

Memory configurations: 
AP.Ple Ugs model 
256K(ROM 1) 

add these: 
(1) 256K SIMM 
(2) 256K SIMMs 
(4) 256K SIMMs 
(1) 1 Meg SIMM 
(2) 1 Meg SIMMs 
(4) 1 Meg SIMMs 

total GS RAM 
512K 
768K 

1.25 Meg 
1.25 Meg 
2.25 Meg 
4.25 Meg 

1 Meg (ROM 3) (1) 256K SIMM 1.25 Meg 
(2) 256K SIMMs 1.50 Meg 
(4) 256K SIMMs 1.78 Meg 
(1) I Meg SIMM 2.0 Meg 
(2) 1 Meg SIMMs 3.0 Meg 
(4) 1 Meg SIMMs 5.0 Meg 

Please note that you can not mix 256K and 1 Meg SIMMs packages on the same GS 
Sauce card, and thatexpansionmustbeperformed in(1), (2) or (4) SIMMs modules. 

Pricing: 
We are offering a limited time "get acquainted" offer to our customers. The GS 
Sauce card is available from SSSi as: 

OK $89.95 -use your own 256K or 1 Meg SIMMs modules 
1 Meg $179.95 
2 Meg $269.85 
4 Meg $449.75 

P'r We are making a special offer to our Genesys users: 
Buy Genesys and and get a coupon to purchase GS Sauce for: 

OK $79.95 -use your own 256K or 1 Meg SIMMs modules 
1 Meg $159.90 
2 Meg $239.85 
4 Meg $399.75 

We hope you will see what an excellant value the GS Sauce card is: low power 
consumption, SIMMs technology, inexpensive, made in USA and lifetime war­
ranty! 
Call or write for seperate 256K and 1 Meg SIMMs modules to upgrade your GS 

•• ~-~-~ - ···1··--



8/118 

Generic Shutdown 
by J eny Kindall, Classic Apple Editor 

Last month I presented a "front end" for 8-bit 
SYS applications and promised to be back this 
month with "back end" routines. Well, here 
they are. Shutting down an 8-bit application is 
much simpler than starting it up. You basically 
just close any open files. reset the display to a 
standard state, clean up any other messes you 
may have made (such as shutting down any 
interrupt handlers you've installed, and do a 
ProDOS quit call. No hay problema. 

4 
5 
6 
7 

8 
9 

10 
11 

12 
13 
14 

wait 

runpfx 
run path 

typ 

lda 
bpl 
lda $COlO 
jmp launch 

str '/hardl' 
str 'basic.system' 

put shutdown The routines in this article also handle the more 
complex procedure of quitting one program and 
starting up another without retuming the user In most cases, you would not want to hard-code 
to his program selector. Occasionally you may the prefix to a specific volume name as we have 
want to present the user with an option to exit done here. You'd want to allow the user to 
to BASIC (launching BASIC.SYSTEM). or to run select the volume, or get the volume name from 
the GS/OS Installer, or whatever. (To do the the application directory as determined by the 
latter you naturally have to boot GS/OS before generic startup routine . Hard-coding the 
running your ProDOS 8 program.) Or you pathname of the next program to be run is OK 
might just have a large ----==---------------... in cases such as the one we 
program that you have have here, where presumably 
segmented into multiple the user would be able to 
SYS files which must be select a menu item which said 
run in a particular order. something like "exit to 

BASIC". 
To use the quit routine, 
simply include the 
SHUIDOWN file (using 
Merlin's Pur directive) 
anywhere convenient in 
your source, then include a 
']mp quit" at the point you 
want the program to quit. To use the launch 
routine, use ']mp launch" instead. In either 
case, you will need to define the labels "runpfx" 
and "runpath" as the labels of Pascal strings 
containing the prefix and pathname of the 
application to be run. (Even if you don't use the 
launch routine, these labels must be defined for 
the file to assemble without errors, since the 
launch routines are assembled whether you 
actually use them or not.) Here's an example 
routine that waits for a keypress, then runs 
BASIC.SYSTEM from /HARDl: 

1 * Demo of shutdown routines 
2 
3 org $2000 

You might be wondering how 
we launch 16-bit (GS/OS) 
programs from ProDOS 8. It's 
easier than you think -­
easier, in fact, than launching 
ProDOS 8 programs! When 

you launch a ProDOS 8 program from GS/OS, 
GS/OS patches ProDOS 8 in several places. 
One of the patches allows ProDOS 8 programs 
to perform what is known as an "extended quit". 
A regular ProDOS 8 quit parameter list looks 
like this: 

dfb $04 ;4 parms in list 

dfb $00 
dw $0000 
dfb $00 
dw $0000 

An extended quit parameter list looks like this: 



dfb $04 ; 4 parms in list 
dfb $EE ;EE = Extended 
dw path ;ptr to pathname 

;of file to launch 
dfb $00 
dw $0000 

All you need to do is issue an extended quit, 
and GS/OS will get control, automatically 
launching the program you specify. GS/OS 
can, naturally, launch either 16-bit or 8-bit 
applications. If GS/OS isn't available, the 
extended quit call simply quits, which is what 
we want to do when we can't launch the desired 
application, anyway. 

Although GS/OS can launch 8-bit programs, we 
can't count on GS/OS being available (or even 
on the machine being a Ilgs, of course!), so we 
have to include our own code to launch SYS 
files. ProDOS 8 does not have an MLI command 
to launch a SYS file, so our routine must open 
the file, read it in, close the file, and JMP to 
$2000 to begin execution of the program. Since 
we'll overwrite the memory from $2000 up when 
reading the file, the code that reads the file into 
memory must live at a lower address. I picked 
$1000. Looked at in this light, the launch 
routine probably becomes a little clearer. 

As with the generic startup routines, I· 
attempted to use as few global labels as 
possible. The ones I used were: 

•shutdown - close all open files and reset 

•quit-

•launch-

display 

call shutdown, then execute 
ProDOS quit 

call shutdown, then launch P8 
or GS/OS application 

• dispatch, dstart, dend -
used by the launch routine 

I can think of only one enhancement that could 
be made to this routine: the ability to pass a 
startup path to another application via the 
launch routine. I didn't include this because 
it's something that probably won't be used very 
frequently. You might also want to break out 
the quit routine into a separate PUT file, to 
avoid including all the launch code in programs 
that don't use it. 

1 *----------------------------------------
2 * 8-bit Generic Shutdown Routines 
3 * by Jerry Kindall 
4 * 8/16 - September 1990 

26 

:clrmap 

62 quit 
63 
64 

lda #O;clear ProDOS memory map 
ldx #$17 
sta $BF58,x ;ProDOS bitmap 
dex 
bne :clrmap 
lda #%11001111 ;except 0,1,4 -7 
sta $BF58 
lda #%00011111 ;pages $B3-$B7 
sta $BF6E ;bitmap+$16 
lda #%1110000 1 ;pp $B8-$BA; $BF 
sta $BF6F 
rts 

j sr shutdown 
jsr $BFOO 
dfb $65 

;bitmap+$1 7 



65 
66 

hope) 
67 
68 
69 
70 
71 
72 
73 
74 
75 

dw : pquit 
jmp quit ; never executed (we 

* MLI parmlist for quit routine 

:pquit dfb 
dfb 
dw 
dfb 
dw 

$04 
$00 
$0000 
$00 
$0000 

76 *-----------------------------------
77 * Launch another application 
78 * Shuts down then exits by running 
79 * another SYS or S16 program 
80 
81 
82 
83 
84 
85 
86 
87 
88 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 

*-----------------------------------

launch jsr 
jsr 
dfb 
dw 
bcs 
jsr 
dfb 
dw 
bcs 
lda 
cmp 
beq 
cmp 
bne 
jsr 
dfb 
dw 

shutdown 
$BFOO ; set pfx to next app 
$C6 
:ppfx 
quit 
$BFOO 

;set _prefix 

$C4 ;get_file_info 
: pinfo 
quit ; on error, quit 
: pinfo+4 
*$FF ;SYS file? 
:sys ; launch 8-bit app 
*$B3 ; 816 file? 
quit ;exit w/ normal quit 
$BFOO 
$65 ;quit call 
:pequit ;parms for 

extended quit 
99 bcs quit ;on error, quit 

100 
101 :sys ldx *dend ;copy 
dispatcher code 
102 :copy lda dispatch-1 , x to $1000 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 

115 

117 

sta 
dex 
bne 
jsr 
dfb 

$FFF,x 

: copy 
$BFOO 
$C8 ;open call 

dw :popen 
bcs quit 
lda : popen+5 ;global close so 
cmp *1 ;ref should be 1, but 
bne quit ; this just in case 

jmp $1000 ; jump to dispatcher 

116 * MLI parmlists for launch routine 

118 : pequit dfb $04;extnd quit prmlst 
119 dfb $EE;flag extnded quit 
120 dw runpath ;addr of path 
121 dfb $00 

122 
123 
124 
125 
126 
127 
128 

dw 

:popen 

129 :pinfo 
parmlist 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 : ppfx 
parmlist 
142 
143 
144 dispatch 
145 
146 
147 
148 

$0000 

dfb 
dw 
dw 
dfb 

$03 
run path 
$1COO 
$00 

;open parmlist 
; pathname 

;disk buffer 
;ref num 

dfb $0A ; get_file info 

dw 
dfb 

run path 
$00 

dfb $00 
dw $0000 
dfb $01 
dw $0000 
dw $0000 
dw $0000 
dw $0000 
dw $0000 

dfb $01 

dw runpfx 

;pathname 
;access bits 

;file type 
;aux type 

; storage type 
;blocks used 

;date mod 
;time mod 

; date created 
; time created 

; set _prefix 

;pathname 

*;where dispatcher is 
;before move to $1000 

org $1000 

149*Load and e xecute next SYS file . NOTE: 
150*This runs at $1000. If it ran w/in 
151*your app ' s normal memory , it could 
152*be overwritten by prog being loaded! 
153*When this gets control , next app ' s 
154*file is already open & ref num is 
155*known to be 1. All we must do is rd 
156*the file, close it, & jump to $2000 . 
157* On err, executenormal ProDOS quit. 
158 
159 dstart jsr $BFOO ;rd data from 
file 
160 
161 
162 
163 
164 
165 
166 
167 
bye 
168 
169 
170 
171 
app 
172 
173 :quit 
174 
175 
176 

dfb 
dw 
php 
jsr 
dfb 

$CA ; read 
: pread 

;save READ status 
$BFOO 
$CC ; close 

dw :pclose 
plp ; get READ status 
bcs : quit ;err, do normal 

ldx #$FF ; init stack ptr 
txs 
jmp $2000 

jsr $BFOO 
dfb $65 
dw : pquit 
jmp : quit 

;enter next 

;quit 



8/Jl(f]) 

177 
178 * MLI parmlists used by dispatcher 
179 
180 :pread dfb $04 ; read parmlist 
181 dfb $01 ;ref number 
182 dw $2000 ;address 
183 dw $9FOO ;bytes requested 
184 dw $0000 ;bytes read 
185 
186 :pquit dfb $04 ;quit parmlist 
187 dfb $00 
188 dw $0000 
189 dfb $00 
190 dw $0000 
191 
192 :pclose dfb $01 ;cl ose parmlist 
193 dfb $00 
194 
195 dend * 
196 
197 * Ret urn assembly counter to correct addr 
198 
199 org dispatch- dstart+dend 
200 lst on 

Letters ... 

Is Late Better Than Never? 

Dear Ross, 

... The situation at the moment is that the June 
issue arrived (first class) on 12th June (post­
marked 1st June). and the other outstanding 
issue (May) arrived on the 14th (postmarked 
26th April) ... 

Some comments first about 8/16. Generally, 
more than half the content is of direct interest 
to me. It is by and large well written, relevant 
and to the point. For those members of our 

local user group like myself who are feeling the 
loss of CALL A.P.P.L.E. , 8/16 seems to be the 
last refuge of the serious programmer. 
Contributors such as Cecil Fretwell, who must 
be suffering from itchy pens and have migrated 
to 8/16, make the publication potentially even 
more attractive. 

The Apple II world needs 8/16. I need 8/16. 
Others around have told me they need 8/16. 
However, for a magazine that proposes to be 
timely and up-to-date, we consider the delay 
and uncertainty of sea mail to be unacceptable. 
The only other publication that I get from the 
States is nibble, which costs $90 per annum, 
airmail. $45 per annum for 8 I 16 is in about 
the right vicinity for price, at its present stage of 
development. 

So what are our options? I noticed with alarm 
that the postage on the June issue was $4.32. I 
hope that's not the regular rate, but just a one­
off. (From other post mailed from the States, I 
would have expected the post to be under 
$2.00) Clearly, airmail postage at that rate is 
not compatible with your current charge of $45 
for non-North American subscribers. So how 
can we get airmail delivery at reduced costs? 

One answer might be to follow A2-Central's ex­
ample and use lighter paper. The other might 
be to produce a physically smaller magazine, by 
using a smaller typeface and a more compact 
layout (based on issues to date there is some 
room for an increase in the black/white ratio). 
But this may not please your domestic sub­
scribers, who seem to prefer the current layout. 

Another possibility is to take only disk subscrip­
tion. We miss out on your art (and probably 
some of the ads, though they are mainly text 
and could probably be included). but I'm sure 
that the airmail postage on a 3.5" disk is cheap­
er than on the magazine... Perhaps you have 
other possibilities in mind. But I do stress that 
we place high value here on getting our monthly 
information "fix" with minimal delay. 

There are a few others here who have seen the 
magazine and are considering subscribing but 
are waiting to see how the delivery situation re­
solves itself ... What can you offer regarding de­
livery of the printed copy? 

Sorry to have to expend most of my letter on 
such mundane things. I should be writing 
about some of the things I have found about as­
sembly language when using Sourceror to poke 
about in other people's programs (like 
AppleWorks, picking up where Bob Sander-



8/Jl8 

Cederlof left off?) . On the other hand, I would 
personally enjoy a bit of coverage of the "S" in 
IIgs (sampling, MIDI, etc.) . 

For now. best regards ... 

Yours sincerely, 

John D. Smyth 
Blackburn, Victoria Australia 

John, 

First of all, I'd like to thank you for your kind 
comments and for being so aware of the fmancial 
situation on the postage front. 

$4.32 is indeed typicaljor a 48 page+ magazine 
shippedfirst class from the US to any destination 
other than Canada or Mexico. I'm afraid that 
alone is the reason for nibble's $90 price tag to 
you. 

As for changing our format - such a move would 
cost us as many or more subscriptions than it 
would gain. We constantly receive letters re­
questing more graphics and a "classier" feel to 
the publication. There are even those requesting 
glossy pages throughout, a move that would 
nearly double the weight. Keep in mind that A2-
Central is an eight page newsletter, a jar differ­
ent beast than ajuU-blown magazine. 

We have not offered afrrst class foreign subscrip­
tion rate because it would require so much spe­
cial handling - a separate data base report as 
well as extra time metering the packages. 
However we think we can handle the extra du­
ties for a' one year frrst class non-North American 
subscription for $84.95. I know that is pricey, 
but the spreadsheet doesn't lie {most of the time, 
anyway). We will at least be able to offer this to 
those that can/will pay for it. And it is $5.00 US 
cheaper than nibble. 

However, I have an idea wherein y'all may be 
able to help yourselves and us, too. We are in 
the process of getting 8/16 into as many book­
stores and distributorships as possible. It is slow 
going, let me teU ya. But if you could fmd an 
Australian periodical distributor who'd want to 
handle us {at least 20 or more copies per month), 
the per issue cost for shipping would drop dra­
matically. 

As for your article suggestions ... according to our 
legal counseL we cannot run anything approach­
ing a disassembly of a commercial product. It is, 
under US law, anyway, a blatant infringement of 

copyright. As enjoyable as Bob's disassembly 
work with AppleWorks was {and his improve­
ments on the code), we absolutely cannotjollow 
suit or we risk having Apple Legal come roaring 
after us. 

I'd love some MIDI and sound articles, too. For 
some reason we've not had a single submission 
in that category. I will declare them to be on our 
"wishlist'' and try to hunt some down. 

Thanks againfor your thoughtful and well-writ­
ten letter. 

==Ross== 

DLT 0.4 Bug, Fast SCSI Quirks, 
& TEPaintText Fix from France 

Dear Ross, 

.. . I found some problems with DLT.04. First 
there is no Page Setup menu and so, we can't 
choose 'compressed', also called Macintosh 
printing mode. The 'cut, copy, and paste' 
menus are enabled but do nothng. 

Other problems seem to be due to TEPaintText 
and the LaserWriter NT printing process. They 
are not reserved to DLT, I met them on all pro­
grams... when they use TEPaintText. When 
printing on US paper, it works fine but, with A4 
paper (the one generally used in France) the 
first char of each line is partially erased (sample 
enclosed) . It seems that this is an Apple prob­
lem. Enclosed is a piece of code allowing us to 
print complete lines. It may be of interest to 
you and your readers. 

If one prints on a LaserWriter with TEPaintText 
(through DLT for instance) and launch Merlin 
16+ he will be unable to reach the text Control 
Panel (tried with Merlin 4.0 to 4 .8). With desk­
top programs I met no visible problem, but I feel 
that something is clobbered in memory and, [as 
a) matter of caution, I reboot when I have fin­
ished this kind of task. The problem has been 
encountered after each printing process on dif­
ferent machines, with or without TransWarp 
GS, with or without the Fast SCSI card, with 
Apple or non-Apple hard disks, with French or 
US GS/OS .... The anomaly may be present in 
all caes but doesn't appear as it does when 
staying in desktop programs. 



8/IL6 

Are you aware of some quirks of the Fast SCSI 
card? If you pass under ProDOS8 and try to set 
prefix to the second partition of a hard disk, at 
the first try you will get a neat pause which 
seems a bit surprising. If you repeat the prefix 
change without quitting the P8 world, the infa­
mous pause will not reappear, but, of course, if 
you reenter GS/OS then come back to 
ProDOS8, the same process will [happen) . It 
seems that some unknown scanning or building 
process is done . 

If you try to boot from a ProDOS8 disk with 
Apple Talk selected (the standard state when 
owning a LaserWriter) and your hard disk off, 
you will get a 35 second pause which may end 
with a pretty "RELOCATION ERROR". If the 
floppy is a GS/OS, Pl6, or a UniDOS one the 
pause doesn't appears [sic). In this circum­
stance the good choice is disconnect AppleTalk 
and boot. for my own use, I put on datas flop­
pies [sic) a special blockOO which quickly in­
stalls the needed Bram config on a first boot 
(need 1 or 2 seconds) allowing me to reboot with 
a single keypress on the desired device. With 
this tips I spare the infamoius pause and my 
nerves doesn't [sic) suffer. 

Back to TextEdit. I have two programs using it 
and allowing cut/copy/paste. One was written 
by myself. When using them to cut in 6/7 
pages documents, I discover that sometimes 
words are broken. When this arrive [sic) stop 
the cut process or you'll hang the system. Put 
the cursor just before the second part of the 
broken word, read the last char of the first part, 
press delete once then retype the last char of 
the 1st part which may have been destroyed. 
All will be reset OK. .. 

PushDLong mac 
pei 
pei 

<<< 

#1+2 ;of course I have to 
#1 ;use a direct pg addr 

record 

worclResult 
PushDLong PrtRecHndl ; hndle to print 

_prJobDialog 
pla 

bne :Printit ;true = ok, continue 

Printit: WaitCursor 
ldy #prinfoSub+6 
ldx #6 

:1 lda [PtrRectPtr],y 
sta rectangle,x ;copy (rect) Rpage 
dey 

dey 
dex 
dex 
bpl :1 
ldy #prinfoSub 
lda [PrtRecPtr],y 
cmp #3 ;is it a LaserWriter? 
bne :2 ;no 
lda rectangle+2 
clc 
adc #6 ;adjust 'left' 
sta rectangle+2 ;to accomodate A4 Prob 

here normal code ••• 
:PrintPage ;using our modified rect 

LongResult 
PushLong PrtDocPtr ; a ptr to graf port 

to draw into 
PushLong startingLine ;line # to print 
PushPtr rectangle ;ptr to rect to 

draw into 
PushWord #0 ;flags 
PushDlong editTxtCtrlHndl 

TEPaintText 
PullLong startingLine 

Yvan Koenig 
Vallauris, France 

Dear Yuan, 

MereU Thank youfor the DLT bug report and the 
SCSI and TEPaintText info. I'll forward those on 
to Apple DTS in case they might be able to make 
some use of the information. 

Your TEPaintText fiX indirectly raises an impor­
tant point: we American software developers 
tend to totally forget about the rest of the world. 
I can attest to the fact that Europe is one of the 
hottest markets for 8/16 and Ariel Publishing 
products in general. 

Yall paying attention? It looks like I'll be attend­
ing a conference in February in Munich, Germany 
courtesty of the European Consortium of 
International Schools (over 700 schools repre­
sented). As I understand it, these folks are in 
dire need of 8 bit Apple II products. if I could sell 
one product to every schooljust in the ECIS con­
sortium, I'd be a very happy camper, indeed. 

Just something to think about... 

Guten tag, mein Fruend. 

==Ross== 



Applesoft Auto Wordwrap 
by Jerry Kindall, Classic Apple Editor 

I wrote this month's Universal Text Output 
routine over nine months ago, for a program I 
was upgrading for a mail-order bookstore. The 
program was an on-disk catalog of all their 
books and was written in Applesoft. One 
modification that was requested was to compile 
the program using the Beagle Compiler, so I 
had to keep that in mind as I developed the 
rest of the modifications. The other 
requirements were that the program run on a 
II+ (which meant either using no lowercase or 
converting lowercase output to uppercase), that 
word-wrap be implemented for the book names 
and descriptions, that the list of book names be 
scrollable in both directions, and that an 
inverse cursor be used to select options and 
book names. 

decided to solve these problems with 
assembly language. The routine is generic 
enough to be useful to most Applesoft 
programmers, so I'll share it with you in this 
article. 

Installing The Routine 

I had originally intended to put the routine in 
page 3, home of most wayward assembly 
language routines meant for use with 
Applesoft. Unfortunately, the program turned 
out to be too large to fit in that space. I 
decided, instead, to install the program at the 
beginning of Applesoft program space, and to 
adjust Applesoft's start-of-program pointer to 
avoid overwriting the routine with BASIC code. 

To make room for the routine, then, you can do 
one of two things. First, you could include the 
following line at the beginning of your main 
program: 

10 IF PEEK (104) <> 9 OR PEEK (103) 

<> 60 THEN POKE 104,9 : POKE 103,60: 
POKE 2363,0 : PRINT CHR$(4) ;"RUN 
prograrn.narne" 

If your main program is sizable, the time 
required to load it twice may become 
distracting. (The program is loaded once at 
Applesoft's normal address, at which time it 
notices that it's not where it needs to be, so it 
adjusts the Applesoft pointers and reloads 
itself.) If that's the case. consider using a 
separate startup program consisting of the 
following line: 

10 POKE 104,9: POKE 103,60: POKE 
2363,0 : PRINT CHR$(4) ;"RUN 
program.name" 

Your user would then run this startup routine 
to start up the program, rather than running 
the main program directly. Load time would be 
reduced because the lengthy main program 
would be loaded only once. 

Once you have adjusted Applesoft's pointers to 
reserve the memory needed by the Universal 
Text Output routine, you can simply BRUN it, 
like this: 

20 PRINT CHR$(4) ;"BRUN TEXTOUT " 

The routine loads and connects itself 
immediately. 

Using the Word Wrap 

Once TextOut is connected, word wrap 
happens automatically. Whenever you print a 
character at the right edge of the screen. 
TextOut backs up to the previous space and 



8/JliS 

moves the last word on the line to the next 
screen line. You may see a slight flicker at the 
right margin as you print text; this is normal, 

look nice on newer Apples while still running 
on older ones. 

because the characters _...------------------..... Screen Scrolling 
are actually printed before 
being erased and 
reprinted on the next line. 
(Set SPEED=50 or so to 
see this happening.) 

'Once TextOut is 
connected, word wrap 
happens automatically." 

TextOut includes two 
easy commands for 
scrolling the text screen 
(actually, the current 
text window) up and 

So to word-wrap a bunch 
of text, all you need to do is print your strings, 
without inteiVening carriage returns. 
Assuming that the array A$ contains N strings 
of text (with an unknown number of characters 
in each string -- up to 255 -- it doesn't matter), 
all you have to do to print the text with word 
wrap is this: 

50 FOR I= 1 TON: PRINT A$(I); 
:NEXT: PRINT 

One thing to be aware of: when using the 
automatic word wrap, you cannot print 
anything in the rightmost column of the screen. 
Attempting to do so will cause the last word on 
the line to wrap! So if you need to print in 
column 40, be sure to deactivate TextOut first. 

By the way, the word wrap (like all TextOut 
functions) respects the text window set with 
POKEs to locations 32-35. A 40-byte area at 
the end of the keyboard buffer is used during 
the word wrap process. 

NORMAL, INVERSE, and FLASH 

NORMAL and INVERSE work just as you'd 
expect them to, except that INVERSE works 
with lowercase. (TextOut activates the 
alternate character set.) FLASH is not 
supported; it is essentially the same as 
INVERSE (except that the first character 
printed after a FLASH command may be 
garbled). The Apple does not support both 
inverse lower case and flashing characters on 
the same screen. 

Case Conversion 

If TextOut detects that it is running on an 
Apple II+, it assumes that lowercase characters 
are not available and converts all lowercase 
letters to uppercase. Thus, your programs can 

down. PRINT CHR$(1); 
scrolls the screen up one line, leaving the 
cursor where it was. PRINT CHR$(2); scrolls 
the screen down one line, leaving the cursor 
where it was. This makes scrolling lists of text 
a snap, and adds a capability to 40 column 
mode that is usually only available in SO­
column mode. 

Text ffighlighting 

TextOut makes it easy to highlight text on the 
screen. Usually, if you're doing a menu with a 
moving inverse bar, you need to store the 
strings in an array and use vrAB, HTAB, 
INVERSE, NORMAL, and PRINT to display and 
erase each item as necessary. TextOut has a 
faster way. Simply set INVERSE or NORMAL 
display mode, position the cursor, POKE the 
number of characters to highlight into location 
0, and PRINT CHR$(3);. This command works 
with text already on the screen -- no need to 
store it and re-print it. Also, it's much faster 
than the old way. 

The highlighting will wrap at the end of a 
screen line, so you could highlight three lines 
of text with POKE 0,120: PRINT CHR$(3);. 

Deactivating and Reactivating 

Use PRINT CHR$(4);"PR#O" to deactivate 
TextOut. (Actually, a PR# command to any slot 
will deactivate it. PR# 1 to perform a printout, 
for example, will leave TextOut disconnected.) 
Use PRINT CHR$(4);"PR#A$800" to reactivate it 
later (or in place of PR#O after PR# 1). While 
TextOut is disconnected, word wrap and case 
conversion don't work, and CHR$(1) through 
CHR$(3) do nothing. You'll definitely want to 
deactivate TextOut before your program ends. 

Listing One: TextOut Source Code 
1 *Text I/0 Hndlr for 40 Col Displays 
2 *by Jerry Kindall -- Sep 90 8/16 



8/1l8 

3 
4 *This rtn performs the following functions: 

5 * 
6 *1)Provide 40 col txt output on Apple IIs, 
7 *automatically convert lower case to upper 
8 *case on Apple II+ and allowing lower case 
9 *in both norm & inv modes on IIe/IIc/IIgs 
10*2) Perform word wrap at rt edge of scrn 
11*3) Provide way to hilight & unhilight text 
12*on the screen; 
13*4) Provide way to scroll screen up & down . 
14* 
15*The above work only on t40 col text screen. 
16*Fns 1 & 2 are performed automatically by 
17*this rtn once installed. Functions 3 and 
18*4 are performed by printing control chars. 
19* 
20*Control- A [CHR$(1)]:Scrolls scm up 1 line, 
21*leaving the cursor exactly where it was. 
22*Ctrl-B [CHR$(2)]: Scrolls scrn down 1 line, 
23*leaving the cursor exactly where it was. 
24*Ctrl-C [CHR$(3)]: Hilights or de-hilights a 
25*portion of the text scrn from the current 
26*cursor pos. To hilight, go into INVERSE 
27*mode before issuing this cmd. To de-hilite, 
28*go into NORMAL mode. Before issuing cmd, 
29*use POKE O,x to specify how many chars to 
30*highlight or de-highlight, up to 255. 
31* 
32* To install rtn, simply BRUN it. It loads 
33*at $800 & requires 307 bytes. You must 
34*POKE 103,60: POKE 104,9: POKE 2363,0 to 
make room 
35* for this code below Applesoft program. 
36* 
37* You can't use flashing text while this rtn 
38* installed, since it allows inv lowercase. 
(On 
39* II+, only uppercase is allowed.) Use only 
40* INVERSE and NORMAL commands while rtn is 
41* installed. 
42* 
43* Doing a PR#O will disconnect rtn . Use 
44* PR#A$800 (as in PRINT CHR$(4)"PR#A$800") 

to re-
45*activate this routine . Be sure to discon­

nect 
46* when program run is completed! 
47 
48 org $800 ;312 ($138) bytes req'd 
49 
50 * Zero page variables 
51 
52 count 0 ;how many chars to invert 
53 psave 1 ;proc status temp locn 
54 a save 2 ;temp accumulator save 
55 xsave 3 ;temporary x reg save 
56 ysave 4 ;temporary y reg save 
57 base $28 ;current text line addr 
58 left 32 ;left margin of txt wnd 

59 width 
60 top 
61 bottom 
62 ch 
63 base2 
64 invflg 
65 prompt 
66 CSW 

67 ormsk 
$40=on 

68 

33 ;width of text window 
34 ;top margin of text wnd 
35;bottom margin of txt wnd 
36;cursor horizontal loc 
$2A;used during scrolling 
50 ;$FF =norm, $3F = inv 
51 ;0 if running program 
5 4 ;Monitor output vector 
$F3;FLASH mode: O=off 

69 * Monitor entry points 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

bas calc 
scroll 
idbyte 

cout1 
altchar 

buffer 

$FBC1 ;calc txt base addr 
$FC70 ;scrll scrn up 1 l ine 
$FBB3 ;equals $EA if on II+ 

;$06 for later models 
$FDFO 
49167;alternate char set ON 

$208;40- char buffr for wrap 

80 * Entry point - setup and initializati on 
81 
82 entry 

output 
83 
84 
85 
86 
87 

works 
88 
89 
90 
91 
92 
93 
94 * Our 
95 
96 nucout 
97 
98 
99 

gonna use 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 :cont 
110 
char set 
111 
112 
113 

ldx 

stx 
stx 
lda 
sta 
sta 

lda 
sta 
lda 
sta 
rts 

#nucout ;hook up nucout t o 

csw ;while modifiying code 
entry+2 ;at entry to read: 
# / nucout cld 
csw+1 
entry+3 

#$08 
entry 
#$4C 
entry+1 

jmp nucout 
;so that PR#A$800 

new output handler 

cld 
php 
sta asave;save off all our regs 
stx xsave ;cause we' re 

'em 
sty ysave 
pla 
sta psave 

ldy prompt 
beq :cont 
lda a save 
jmp gocout 

lda a save 
sta altchar ; switch to alt 

;does nothing on II+ 

and #$7F;strip hi bit from char 



8/TI.S 

114 
115 
116 
117 
118 
print 
119 
120 
121 
122 
123 

beq 
cmp 
blt 
cmp 
blt 

ldy 
iny 
cpy 
bne 

124 wrap jsr 
125 :backlp lda 
126 jsr 
127 ldy 
128 beq 
no wrap 
129 lda 
at cursor 
130 and 
131 cmp 
132 bne 
another space 
133 
134 ldx 
135 :wraplp iny 
136 cpy 
137 bge 
138 lda 
139 
140 
141 
142 
143 :saved 
144 
145 

sta 
inx 
bne 

stx 

lda 
146 :clearlp jsr 
147 ldy 
148 
149 

bne 

150 :bufout ldy 
151 lda 
152 sta 
153 ldx 
154 :outlp lda 
155 jsr 
156 inx 
157 
158 
159 
160 
161 
162 goctrl 
blt) 
163 
164 nowrap 
165 

cpx 
blt 
sty 
jmp 

blt 

lda 

gocout 
#4 
goctrl 
#33 

;it's a null 
;is it one of ours? 
;go process it 
;compare to space 

gocout ;it's spc or ctrl, 

ch ;are we at right margin? 

width 
gocout ;nope, don't wrap it 

docout ;print it on screen 
#$88 ;backspace once 
cout1 
ch ;get horiz cursor pos 
nowrap ;we're at start, 

(base) , y 

#$7F 
#$20 
:backlp 

;get character 

; strip high bit 
;is it a space? 
;nope, back 

#0 ;init index to buffer 
; bump up screen index 

width ;are we past width? 
:saved ;yes, done saving 
(base) ,y 
buffer , x 

:wraplp ;always taken 

count ; remember count 

#$AO ;space 
cout1 ;print it 
ch ;got to next line yet? 
: clearlp ;nope 

invflg 
#$FF 
invflg 
#0 

;save old inv flag 
;set norm (verbatim) 

;pt to strt of buff 
buffer,x ;get a char 
cout1 ;print it 

; bump to next char 
count ;are we done? 
:outlp ;no, do next 
invflg;restore inverse flag 
exit ;and go back to caller 

ctrl ;always (get here with 

#$80 ;load CR and fall thru 

166 * Call docout and return to caller 
167 
168 gocout jsr docout 

169 exit 
170 
171 eq 
172 
173 
174 
175 
176 

lda 
ph a 
lda 
ldx 
ldy 
plp 
rts 

psave 

a save ;restore registers 
xsave 
ysave 

177 * Call COUT1 with special handling 
178 
179 docout 
180 
bit 
181 
182 
183 
184 
185 
186 
187 
188 :0 
189 
190 
191 
192 
193 
194 
char) 
195 
196 
197 
198 
199 
200 
201 : 1 
202 
203 
204 

ldx 
ora 

cmp 
blt 
bit 
bpl 
cmp 
blt 
sbc 
cpx 
beq 
ldx 
ldy 
sty 
iny 
sty 

and 
cmp 
bge 
cmp 
blt 
sbc 
jsr 
stx 
rts 

invflg 
#$80 ; restore high 

#$AO ;less than spc (ctrl)? 
:1 ;print it always 
idbyte ;do we have a II+? 
:O;nope, check inverse mode 
#$EO ;is it lower case? 
:0 ;nope, check inv mode 
#32 ;subt 32, convt to uppr 
#$FF;are we in normal mode? 
:1 

#$3F;force "true" 
;yes 

inv mode 
#$FF;force to $FF for now 
invflg 

;force FLASH mode off 
ormsk ; (helps not for this 

#$7F 
#$60 
:1 
#$40 
:1 
#64 
cout1 

;lower case? 
;yep, OK, print 

;symbol or ctrl char? 
;yep, OK, print 

;bump ASCII code down 
;print it 

invflg ;restore old inv flg 

205 * Handle our control characters 
206 
207 ctrl 
208 
209 
hilight 
210 
211 
212 

cmp 
beq 
bge 

jsr 
jmp 

#2;how does it relate to 2? 
scrldn 
hilite 

;equal, scroll down 
;greater (3), 

scroll ;less (1), scroll up 
exit 

213 * Highlight (or un-highlight) characters 
at cursor 
214 
215 hilite 
216 
cursor 
217 
218 
letter? 
219 
220 
221 :0 
222 

ldy 
lda 

and 
cmp 

bge 
adc 
jsr 
dec 

ch 
(base),y ;get char at 

#$7F 
#$2 ;is it an inverse 

:0 ;nope, go ahead print 
#$40 ; adjust to proper val 
docout ; print inv or norm 
count ;are we done? 



223 
224 
225 

bne 
jmp 

hi lite 
exit 

;nope 
;yep 

226 * Scroll screen down without moving cursor 
227 
228 scrldn lda base ; remember 
current base addr 

ph a 229 
230 
231 
232 

lda base+1 
ph a 
ldy bottom ;get address of 

bottom line 
233 dey 
234 tya 
235 sta 
236 jsr 
237 :vloop lda 
addr in base2 
238 sta 
239 lda 
240 
241 
242 
243 
line 
244 
245 
line 
246 
247 
to copy 
248 
249 :hloop 
line 
250 
251 
252 
253 
254 
255 
256 :clear 
display 
257 
258 
259 :cloop 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 

sta 
dec 
lda 
brni 

cmp 
blt 

jsr 
ldx 

ldy 
lda 

sta 
iny 
dex 
bne 
beq 

ldy 

ldx 
lda 
sta 
iny 
dex 
bne 

pla 
sta 
pla 
sta 
jmp 

lst 

count 
bascalc 
base 

base2 
base+1 
base2+1 
count 

;sav old base 

;move up one line 
count ;get line number 
:clear;if neg, clear top 

top ;above top of window? 
:clear ;yes, go clear top 

bascalc 
width ;how many chars 

left ;where we're starting 
(base),y ;copy char from 1 

(base2),y ;to line below 
;pt to next char 

;count how many we've done 
:hloop ;nope, next char 
:vloop ;yes, next line 

left ;clear top line of 

width 
#$A ; normal space char 
(base) ,y 

;adjust pointer 
;adjust counter 

:cloop ;nope 

;remember old base addr 
base+1 

base 
exit 

off 

;back to caller 

Listing Two: TextOut Object Code 

If you don't have an assembler, enter the 
lines below exactly as shown starting at an 
Applesoft prompt. Be sure to double-check 
your typing; you are entering important 
machine-language code! 

POKE 104,9: POKE 103,60: POKE 2363,0: NEW 
CALL-151 
800: A2 19 86 36 BE 02 08 A9 
808: 08 85 37 8D 03 08 A9 D8 
810: 8D 00 08 A9 4C 8D 01 08 
818: 60 D8 08 85 02 86 03 84 
820: 04 68 85 01 A4 33 FO 05 
828: AS 02 4C 8F 08 AS 02 8D 
830: OF CO 29 7F FO 59 C9 04 
838: 90 51 C9 21 90 51 A4 24 
840: C8 C4 21 DO 4A 20 9D 08 
848: A9 88 20 FO FD A4 24 FO 
850: 3C B1 28 29 7F C9 20 DO 
858: EF A2 00 C8 C4 21 BO 08 
860: B1 28 9D D8 02 E8 DO F3 
868: 86 00 A9 AO 20 FO FD A4 
870: 24 DO F9 A4 32 A9 FF 85 
878: 32 A2 00 BD D8 02 20 FO 
880: FD E8 E4 00 90 FS 84 32 
888: 4C 92 08 90 42 A9 8D 20 
890: 9D 08 AS 01 48 AS 02 A6 
898: 03 A4 04 28 60 A6 32 09 
8A8: 10 06 C9 EO 90 02 E9 20 
8BO: EO FF FO 15 A2 3F AO FF 
8B8: 84 32 C8 84 F3 29 7F C9 
8CO: 60 BO 06 C9 40 90 02 E9 
8C8: 40 20 FO FD 86 32 60 C9 
8DO: 02 FO 1E BO 06 20 70 FC 
8D8: 4C 92 08 A4 24 B1 28 29 
8EO: 7F C9 20 BO 02 69 40 20 
8E8: 9D 08 C6 00 DO ED 4C 92 
8FO: 08 AS 28 48 AS 29 48 A4 
8F8: 23 88 98 85 00 20 C1 FB 
8AO: 80 C9 AO 90 24 2C B3 FB 
900: AS 28 85 2A AS 29 85 2B 
908: C6 00 AS 00 30 15 CS 22 
910: 90 11 20 C1 FB A6 21 A4 
918: 20 B1 28 91 2A C8 CA DO 
920: F8 FO DD A4 20 A6 21 A9 
928: AO 91 28 C8 CA DO FA 68 
930: 85 29 68 85 28 4C 92 08 

3DOG 

BSAVE TEXTOUT,A$800,L$138 



8/Jl.CB 

Insecticide David Gauger's Hardware Hacker column in the July issue 
(the 11-Ears voice recognition project) contained a buggy 
(?) circuit diagram for the DB-9 version. Here's the cor­
rected schematic. David sends his apologies and hopes 
that no one was inconvenienced too much. 

Schematic Diagram- DB-9 
Use with Apple Ue I Uc I Uc +I Ugs 

10 mfd 
+I/ 

I \1--------, 

1 s 
2 7 

LM 386 

6 

~"---: 5 1-- 5v 
Dynamic 

Mic. 

220 Ohm 

~ 

'-- 1 

2 
Ooto-
Coupler 

3 

6 

5 

4 

Figure #2 

\5.48 37 26 

__r~~----------~lswo 

1 [-Ears Speech Recognizer 



8/Jl(O 

• 8/16 on Disk • 
We don't have the room to even come close to telling you what goes into the disk every single month. 
We estimate that by the end of our first year we'll have delivered approximately 8 megabytes of 
source code, utilities, articles, and other goodies for Apple II programmers. That works out to less 
than $9 per megabyte. I think it is the deal of the century, but since I'm naturally quite biased, I 
thought I'd tell show you the kind of feedback we're getting about it.. . 

"I have found it to be a fantastic investment: I've never had soooo much information in one place be­
fore ... " - Michael W. Faulkner, Berlin, Germany 

"You guys are simply outdoing yourselves .. . "- Robert Todoroff, St. Louis, MO 

"I can't live without it!" - Robert Santos, Miami, FL 

The magazine you are now holding in your hands is but a small subset of the material on the 8/16 
disk. We have combed the BBS's and data services across the country to collect the best of the 
public domain and shareware offerings for programmers. Not only that, but we have extra articles 
and source code written by our staff. 

Highlights from the last four disks (so far every disk has had more than 600K of material!) : 

• Aug '90: 

• July '90: 

8 bit- Jerry Kindall's Generic Shutdown routines for assembly (this is GREAT); a 
complete. working Forth language compiler (Uniforth); Ross's FN Local and FN 
SetEOF for ZBasic programmers (A classic ... hehehe - guess who's writing this!) 

16 bit- Doni Grande's extended keyboard code; Jay Jennings' extended control 
routines; and- believe it or not- Nifty List v. 3.0, by Dave Lyons . 

8 bit- the assembly source to Super Selector, which includes code to eject 3 .5" 
disks; the ZBasic code for DrawPoly.FN, a super neat. flexible DHR and hires poly 
plotter; the demo to Shem the Penman's Guide to Interactive Fiction 

16-bit- an updated Orca/APW shell command, COPY; Console Driver demo (with 
source and an information file (this is neat!); Steven Lepisto's Illusions of Motion 
Number Three. 

• June '90: 8 bit- 3D graphics package, MicroDot™ Demo, DiskWorks, 80 column screen 
editor. 

• May '90: 

16 bit- Assembly Source Code Converter (shareware). Install DA (on the fly; 
by our our own Eric Mueller). Find File source code. 

8 bit- Tom Hoover's AppleWorks Style Line Input. 
16 bit - Bryan Pietrzak's shell utilities for Orca/ APW, Steve Lepisto's Illusions of 
Motion, Number TWo. 

1 year- $69.95 6 months - $39.95 3 months - $21 

Individual disks are $8.00 each. Non-North American orders add $15 for 1 year, 8$ for 6 months, and $5 
for three months. All disks are shipped first class. 



• Shem The Penman's Guide To Interactive Fiction • 

This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second 
of all it is a very well organized, well written, and well programmed introduction to programming 
interactive fiction. It is, in fact, the only package of its kind I've ever seen! 

Author Chet Day is a professional writer (go buy The Hacker at your nearest book store!) and an 
educator who is as conerned with the content of your interactive fiction program as with the form. 
This package is fun, entertaining, and useful. It includes Applesoft, ZBasic, and Micol Advanced 
Basic "shells" which will drive your creations - $39.95 (both 5.25" or 3.5" disks supplied). P.S. The 
advantage to the ZBasic and Micol versions is that with the easy integration of text and graphics 
provided in those langauges, you can easily load a graphic and overlay text in the appropriate spots. 

• Back issues of The Sourceror's Apprentice • 
Ross's Recommendations: 

8 bit: Feb '89 

16 bit: Jan '89 

- Relocation Without Dislocation, by Karl Bunker 
... techniques for writing relocatable 8 bit code 
Jan, Mar, Apr, Aug '89- The Applesoft Connection Parts 1-4, by Jerry Kindall 
... using the ampersand vector and internal Applesoft routines. A classic series. 
Jun '89 - Peeking at Auxiliary Memory: A Monitor Utility, by Matthew Neuberg 
.. .lets the monitor display aux mem. an invaluable 128K programming tool. 
Sep '89- Getting More Value(s) From Your Game Port, Eric Soldan 
... increase range of values returned by a joystick for DHR coordinates, etc. 

-Programming with Class 1, by Jay Jennings 
... an introduction to GS/OS class 1 calls 
Mar & Jun '89- Vectored Joystick Programming, by Stephen Lepisto 
... a technique for increasing responsiveness in reading the joystick 
July '89 - Making a List (and checking it twice). by Ross W. Lambert 
... an introduction to the GS List Manager 
Sep '89 -Generic Start II, The Sequel, by Jay Jennings 
... an introduction to the new start up song and dance for new system software 
Jan '90 -Trapping Tricky Tool Errors. by Jay Jennings 
... a classy programmer's error trap for the GS. 

All back issues are $3.00 each (postage and handling included except for non-North American 
orders. Those of you on other shores please add $1.50 extra per issue) . 

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software 
and publications). If you are ever dissatisfied with one of our products. we will cheerfully refund the 
amount you paid on your request. 

Ordering Info: 

To order, just write to: Ariel Publishing, Box 398, Pateros, WA 98846 or call (509) 923-2249. Our 
fax number is (509) 689-3136. 

We accept Visa. MC. personal checks, lOU's, institutional purchase orders (for those of you in insti­
tutions). RAM chips, TransWarp GS's, Apaloosa's, hats from around the world, programming work, 
etc. Be creative ifyou're broke. 



ApplesojfM Never 
Looked So Good! 
The Call Box TPSTM (Toolbox Programming System) 
gives you the tools to look and sound your best. Make your 
own Applesoft BASIC desktop applications which look and 
sound like professional programs. 

Over 1000 toolbox calls have been added to Applesoft BASIC 
which gives you, the BASIC programmer instant access to the 
Apple Ilgs toolbox in a simple and flexible way. You can use 
the Memory Manager, Miscellaneous Tools, Tool Locator, 
Quickdraw II, Desk Manager, Event Manager, Scheduler, 
Sound Manager, Desktop Bus, Text Tools, Window 
Manager, Menu Manager, Control Manager, Quickdraw II 
(aux.), Line Edit, Dialog Manager, Scrap Manager, Note 
Synthesizer, Note Sequencer, A.C.E., Standard File and 
much more. In addition to all the tool calls you have access to 
ProDOS 16 and GS/OS commands at the same time that you 
have access to ProD OS 8 commands. You can even load and 
run relocatable shell applications from within the Call Box 
BASIC environment. 

The Call Box TPS includes the BASIC interface, WYSIWYG 
Window, Dialog, Menu and Image editors, Disk and system 
utilities plus demos and tutorials. The Call Box TPS comes on 
3 - 3.5"disks with a 140+ page hard cover ring binder 
manual. Requires 1 megabyte min. and GS/OS V5.0.2 min. 
Call Box is supported by a programmers association which 
provides its members with disks and documentation designed 
to educate as well as illuminate. 

The Call Box TPS ............................ $99.00 

® So What Software· 

10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708 

(714) 964-4298 VISA/Mastercard accepted 

Hired Guns 
8/16 is providing a free service to all 
programmers (who are subscribers!): 
placement of a complimentary "situation 
wanted" ad. If you're available for hire and 
looking for a programming job (from full-time 
to freelance). a listing in this directory is your 
ticket to work. The ads are open to both 8 and 
16 bit authors and are limited to 120 words or 
less. Be sure to give your address, phone 
number, and email addresses, and specify 
how much of a job you're after (part-time? 
full-time? royalty-based? etc). Send it to 
Situation Wanted, c/o Ariel Publishing, Box 
398, Pateros, WA 98846 

David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-
371-4350 eves. or leave message. GEnie: [DDEL Y], 
AOL: "DaveEiy". Experienced in 8 and 16 bit assembly, 
C, Forth and BASIC. Available for hourly or flat fee 
contract work on all Apple II platforms (llgs preferred). 
Have experience in writing desktop and classical 
applications in 8 or 16 bit environments, hardware and 
firmware interfacing, patching and program maintenance. 
Will work individually or as a part if a group. 

Jeff Holcomb, 18250 Marsh Ln, #515, Dallas, Tx 75287. 
(214) 306-0710, leave message. GEnie: [Applied.Eng], 
AOL: "AE Jeff". I am looking for part-time work in my 
spare time. I prefer 16-bit programs but I am familiar with 
8-bit. Strengths are GS/OS, desktop applications, and 
sound programming. I have also worked with 
hardware/firmware, desk accessories, CDevs, and inits. 

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-
752-9731 (day), 817-666-7605 (night). GEnie: Tom­
Hoover; AOL: THoover; Pro-Beagle, Pro-APA, or Pro­
Carolina: thoover. Interests/strengths are 8-bit utility 
programs, including TimeOut(tm) applications, written in 
assembly language. Looking for "part-time" work only, to 
be done in my spare time. 

Jay Jennings, 14-9125 Robinson #2A, Overland Park, 
KS, 66212. (913) 642-5396 late evenings or early 
mornings. GEnie: [A2.JAY] or [PUNKWARE]. Apple llgs 
assembly language programmer. Looking for short term 
projects, typically 2-4 weeks. Could be convinced to do 
longer projects in some cases. Familiar with console, 
modem, and network programming, desk accessories, 
programming utilities, data bases, etc. GS/OS only. No 
DOS 3.3 and no 8-bit (unless the money is extremely 
good and there's a company car involved). 



Jim lazar, 1109 Niesen Road, Port Washington, WI 53074, 
414-284-4838 nights, 414-781-6700 days. AOL: 
"WinkieJim", GEnie: [WINKIEJIM]. Strengths include: 
GS/OS and ProDOS 8 work, desktop applications, CDAs, 
NDAs, INITs. Prefer working in 6502 or 65816 Assembly. 
Have experience with large and small programs, utilities, 
games, disk copy routines and writing documentation. 
Nibble, inCider and Caii-A.P.P.L.E. have published my 
work. Prefer 16-bit, but will do 8-bit work. Type of work 
depends on the situation, would consider full-time for career 
move/benefits, otherwise 25 hrs/month (flexible). 

Stephen P. Lepisto, 12907 Strathern St., N. Hollywood, CA 
91605, 818-503-2939. GEnie: S.LEPISTO. Available for full­
time and part-time contract work (flat rate or royalties). 
Experienced in 6502 to 65816 assembly, BASIC and C. 
Can work in these or quickly learn new languages and 
hardware (some experience with UNIX, MS-DOS, 8086 
assembly). Experience in games, utilities, educational, 
applications. Lots of experience in porting programs to 
Apples. Programmed Hacker II (64k Apple II), Labyrinth 
(128k Apple), Firepower GS and others. Can also write 
technical articles. 

Chris McKinsey, 3401 Alder Drive, Tacoma, WA, 98439, 
206-588-7985, GEnie: C.MCKINSEY. Experience in 
programming 16-bit (65c816) games. Strengths include 
complex super hi-res animation, sound work (digitized and 
sequenced), and firmware. Looking for new Jigs game to 
develop or tO port games from other computers to the Jigs. 

Eric Mueller, 2760 Roundtop Drive, Colorado Springs, CO, 
80918, 719-548-8295 anytime. GEnie: (A2PRO.ERIC]. CIS: 
73567,1656, AO: "A2Pro Eric". Strengths include GS/OS 
and ProDOS 8 work, console, and modem 1/0, working with 
hardware/firmware, desktop applications, desk accessories. 
Can also do tool patches, IN ITs, whatever. Don't call me for 
complex animation or sound work. Have experience 
working with others on programs, and on large applications. 
References available. Prefer 16 bit stuff always. Looking for 
_very_ small (less than 25 hrs/month) jobs right now. 

Bryan Pietrzak, 4313 West 207th St. Matteson, II, 60443, 
(708) 748-6363, or (217) 356-4351. GEnie: B.PIETRZAK1. 
Strengths include database design and data structures 
(hashing, etc) and Continued on p. 43 

lane Roath, Ideas From the Deep, 309 Oak Ridge Lane, 
Haughton, LA 71037. (318) 949-8264 (leave message with 
phone number!) or (318) 221-5134 (work). GEnie: L.Roath, 
Delphi: LRoath . Available for part time work, large or small 
for any of the Apple II line, especially the Jigs. Specializing 
in disk 1/0 graphics and application programming. Wrote 
Dark Castle GS, Disk Utility Package, WordWorks WP, 
Project Manager, DeepDOS, LaneDOS, etc. including 
documentation. Currently work for Softdisk G-S. Work only 
in Assembler. 

Steve Stephenson (Synesis Systems), 2628 E. Isabella, 
Mesa, AZ, 85204, 602-926-8284, anytime. GEnie: (S-

STEPHENSON], AOL: "Steve S816". Available for projects 
large or small on contract and/or royalty basis. Experienced 
in programming all Apple II computers (prefer IIGS), 
documentation writing/editing and project management. 
Have expertise in utilities, desk accessories, drivers, 
diagnostics, patching, modifying, and hardware level 
interfacing. Willing to maintain or customize your existing 
program. Work only in assembly language. Authored 
SQUIRT and Checkmate Technology's AppleWorks 
Expander, managed the ProTERM(tm) project, and co­
invented MemorySaver(tm) [patent pending]. 

Jonah Stich, 6 Lafayette West, Princeton, NJ, 08540. (609) 
683-1396, after 3:30 or on weekends. America Online 
(preferred): JonahS; GEnie: J.STICH1; InterNET: 
jonah@amos.ucsd.edu. Have been programming Apples for 
7 years, and can speak Assembly (primary language), C, 
and Pascal. Currently working on the GS, extremely skilled 
in graphics, animation, and sound, as well as all aspects of 
toolbox programming. Prefer to work alone or with one or 
two others. Can spend about 125 hours a month on 
projects. 

loren W. Wright, 6 Addison Road, Nashua, NH 03062, 
(603)-891-2331. GEnie: [L.WRIGHT2]. Lots of experience in 
6502 assembly, BASIC, C, Pascal, and PLM on a wide 
variety of machines : Apple II, Jigs, C64, VIC20, PET, Wang 
OIS. Some Jigs desktop programming. Have done several 
C64<>Apple program conversions. Numerous articles and 
regular columns in Nibble and MICRO magazines. Product 
reviews and beta testing . Specialties include user interface, 
graphics, and printer graphics. Looking for full-time work in 
New England and/or at-home contract work. 



The Sensational Lasers 
Apple lle/llc Compatible 

$345s~7t~~1:~,:,0g~6~s! 
~ Now Includes 
COPY II PLUS® 

The Laser 128® features full Apple® II compatibil ity with an internal disk dnve, serial , parallel, modem, and 
mouse ports. When you're ready to expand your system, there 's an external drive port and expansion slot. The 
Laser 128 even includes 10 free software programs' Take advantage of this except1onal value today .. .. . . .... $345 

Super High Speed Optionl 

only $385 
The LASER 128EX has all the features of the 
LASER 128, plus a triple speed processor and 
memory expansion to 1MB ........ $385.00 

The LASER 128EX/2 has all the features of the 
LASER 128EX, plus MIDI, Clock and Daisy 
Chain Drive Controller ....... ..... $420.00 

DISK DRIVES 
* 5.25 LASER/ Apple 11c ........... $ 99.00 
* 5.25 LASER/ Apple 11e ........... $ 99.00 
* 3.50 LASER/ Apple BOOK .......... $179.00 
* 5.25 LASER Daisy Chain ...... $109.00 
* 3.50 LASER Daisy Chain ... ._.$179.00 

USA MICRO 

Save Money by Buying 
a Complete Packagel 

THE STAR a LASER 128 Computer with 12" 
Monochrome Monitor and the LASER 145E 
Printer .......................... $620.00 

THE SUPERSTAR a LASER 128 Computer with 
14" RGB Color Monitor and the LASER 145E 
Printer ........... . .............. $785.00 

ACCESSORIES 
* 12" Monochrome Monitor ........ $ 89.00 
* 14" RGB Color Monitor ........... $249.00 
* LASER 190E Printer .. ......... . . $219.00 
* LASER 145E Printer .......... $189.00 
* Mouse ........................ $ 59.00 
* Joystick (3) Button .............. $ 29.00 
* 1200/2400 Baud Modem Auto ..... $129.00 

YOUR DIRECT SOURCE FOR APPLE 
AND IBM COMPATIBLE COMPUTERS 

Laser 128 is a registered trademark ot Video Technology Computers.lrJt Apple, Apple lie. Apple lie an(llmagewnter are registered trademarks ol Apple Computer, Inc 

BULK RATE 
U.S. POSTAGE 

PAID 
PATEROS, WA 
PERMIT NO.7 

http://apple2scans.net


	8/16 - The Kansas Report: Uncle DOS looks funny with wet hair

	The Publisher's Pen - Ross W. Lambert

	The ToolSmith: Mega Power for Mini Bucks - Ross W. Lambert

	The ZBasic Zealot: Miscellanea Month II - Ross W. Lambert

	To Shell With It - Morgan Davis

	Generic Shutdown - Jerry Kindall

	Letters

	BASICally Applesoft: Applesoft Auto Wordwrap - Jerry Kindall

	Insecticide

	From the House of Ariel

	Hired Guns




